摘要
MEMS加速度计是一种用于测量载体加速度的微型集成系统,已被广泛应用于生产生活中;然而MEMS器件在使用过程中易由内外因素影响出现故障,若不能及时检测故障并校正故障数据,将会使得系统无法准确感知外界环境进而导致控制出现偏差,因此及时检测MEMS加速度计的故障并校正其故障数据对于提高系统的鲁棒性、测量准确性以及控制稳定性等方面具有重要意义;现有检测校正方法大多依靠建立加速度计的物理模型或构建传感器冗余网络来实现加速度计的自检测与自校正,但这些方法存在建模复杂且引入额外误差或硬件资源需求高等问题;为了避免建模不准确引入的误差并减少算法对硬件资源的需求,基于近传感器计算的思想,设计了一种轻量化的、基于数据驱动的MEMS加速度计自检测自校正算法;测试结果表明,算法对冲击、偏差、信号丢失、恒定输出4种故障的检测率均达到90%,校正后数据与正常数据的平均绝对误差小于0.15 g,并且具有在2.54 ms内处理加速度计数据的能力。
A micro-electro-mechanical system(MEMS)accelerometer is miniature integrated system,which is widely used to measure carrier acceleration in various industrial and domestic applications.However,MEMS devices are susceptible to faults due to internal and external factors during operation.If the fault can not be detected and the fault data can not be corrected in time,the system will not be able to accurately perceive the external environment,resulting in control deviations.Hence,It is of great significance for the timely detection and correction of MEMS accelerometer faults to improve the robustness of the system measurement data accuracy,and control stability.Existing detection and calibration methods often rely on establishing the accelerometer physical model or constructing redundant sensor networks to achieve the self-detection and self-correction of accelerometer,but these methods have the shortages of complexities in modeling,additional errors,or high hardware resource requirements.To avoid inaccuracies introduced by modeling and reduce the demand of the algorithm on hardware resources,a lightweight,data-driven self-testing and self-calibration algorithm for the MEMS accelerometer is proposed based on the notion of proximal sensor computation.Test results demonstrate that the algorithm achieves a detection rate of 90%for four types of faults:shock,bias,signal loss,and constant output.The average absolute error between the calibrated data and the normal data is less than 0.15 g,with the ability to process the accelerometer response data within 2.54 ms.
作者
薛健
张博亚
尹可
付杰
付洪硕
凤雷
刘冰
XUE Jian;ZHANG Boya;YIN Ke;FU Jie;FU Hongshuo;FENG Lei;LIU Bing(School of Electronics and Information Engineering,Harbin Institute of Technology,Harbin 150001,China;Military Office of Rocket Armaments Department in Harbin District,Harbin 150001,China;Hunan Aviation Powerplant Research Institute,AECC,Zhuzhou 412002,China)
出处
《计算机测量与控制》
2024年第10期53-61,共9页
Computer Measurement &Control
基金
国家重点研发计划(2022YFB3207504)。