摘要
我们考虑以下分数阶算子预定曲率问题:(-△)^(s)u=K(y)u^(2*s^(-1)),其中N≥3,0s*=2N/N-2s是分数阶临界Sobolev指数,K(y)是一正函数.当K(y)有一列模趋于正无穷大的局部极大值点的条件下,我们利用有限维约化方法,证明了上述问题任意有限个多泡解的存在性.这些解集中在K(y)的k个不同局部极大值点处.
We consider the following prescribed curvature problem of fractional operator:(-△)^(s)u=K(y)u^(2*s^(-1)),where N≥3,0s*=2N/N-2s is the fractional critical Sobolev exponent,K(y)is a positive function.When K(y)has a sequence of strictly local maximum points moving to infinity,we use the finite dimensional reduction method to prove the existence of any finitely many multi-bubbling solutions to the above problem.These solutions concentrate at k different local maximum points of K(y).
作者
赵安澜
聂建军
An Lan ZHAO;Jian Jun NIE(School of Mathematics and Physics,North China Electric Power University,Beijing 102206,P.R.China)
出处
《数学学报(中文版)》
CSCD
北大核心
2024年第5期895-910,共16页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(12261031,12261076)
中央高校基本科研费(2023MS078)。
关键词
临界指数
多泡解
能量泛函
有限维约化
critical exponent
multi-bubbling solutions
energy functional
finite di-mensional reduction