摘要
A centralized framework-based data-driven framework for active distribution system state estimation(DSSE)has been widely leveraged.However,it is challenged by potential data privacy breaches due to the aggregation of raw measurement data in a data center.A personalized federated learningbased DSSE method(PFL-DSSE)is proposed in a decentralized training framework for DSSE.Experimental validation confirms that PFL-DSSE can effectively and efficiently maintain data confidentiality and enhance estimation accuracy.
基金
supported by the National Natural Science Foundation of China under Grant 72331008,and PolyU research project 1-YXBL.