期刊文献+

Si/TiO_(2) carbon fiber core encapsulated in hierarchical multiple MXene@Co-MoS_(2) shells for constructing a free-standing anode of lithium storage

原文传递
导出
摘要 Silicon-based(Si-based) materials offer more possibilities for generating new portable electronic devices due to their high specific capacities. However, their inferior electrical conductivity and volume expansion during cycling seriously limit their development. The optimum solution is to select specific materials to establish an exceptionally conductive and volume buffer structure,which can assist Si materials in developing their excellent lithium storage properties. In this study, Si particles were confined in TiO_(2)carbon fibers(TiO_(2)CFs) via electrospinning, after which they were encapsulated with MXene and Co-MoS_(2)(CMS) nanosheets to fabricate hierarchical ST-2@MXene@CMS films. TiO_(2)CF, MXene and CMS were employed to establish a coherent conductive network with one-, two-and three-dimensional electronic pathways to permit the unimpeded flow of electrons inside the electrode material. TiO_(2)CF, MXene and CMS acted precisely as multilayered buffers to ameliorate the volume change of Si particles during cycling. In addition, the CMS nanosheets were involved in lithium storage, contributing to the final electrochemical performance. Ultimately, the ST-2@MXene@CMS films served as free-standing electrodes, avoiding the impact of inactive interfaces on the electrochemical performance and fulfilling the lightweight requirement for new energy storage devices.
出处 《Rare Metals》 SCIE EI CAS CSCD 2024年第9期4222-4233,共12页 稀有金属(英文版)
基金 financially supported by Shanghai Aerospace Science and Technology Innovation Foundation (No. SAST2020-105)。
  • 相关文献

参考文献5

二级参考文献12

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部