期刊文献+

N,P co-doped 3D porous carbon with self-assembled morphological control via template-free method for potassiumion battery anodes

原文传递
导出
摘要 The larger ionic radius of potassium ions than that of lithium ions significantly limits the accomplishment of rapid diffusion kinetics in graphite electrodes for potassium-ion batteries(PIBs),resulting in comparatively poor rate performance and cycle stability.Herein,we report a high-rate performance and cycling stability amorphous carbon electrode achieved through nitrogen and phosphorous co-doping.The as-prepared N,P co-doped carbon electrodes have distinct 3D structures with large surface areas,hierarchical pore architectures,and increased interlayer spaces resulting from the direct pyrolysis of supramolecular self-assembled aggregates without templates.The obtained electrode N3P1 exhibits a reversible specific capacity of 258 m Ah·g^(-1)at a current density of 0.1A·g^(-1)and a good long-term cycle performance(96.1%capacity retention after 800 cycles at 0.5 A·g^(-1)).Kinetic investigations show that the N3P1 electrode with the welldeveloped porous structure and large number of surface defects exhibits capacitive-driven behavior at all scan rates,which may be attributed by N and P co-doping.Ex-situ transmission electron microscopy analyses in the fully discharged and charged states demonstrate structural stability and reversibility owing to the expanded interlayer space.The suggested synthesis approach is simple and effective for producing heteroatom-doped carbon materials for PIBs and other advanced electrochemical energy storage materials.
出处 《Rare Metals》 SCIE EI CAS CSCD 2024年第9期4243-4252,共10页 稀有金属(英文版)
基金 financially supported by the National Research Foundation of Korea(NRF)from Korean government(MSIT,Korea)(No.2023R1A2C1005459) the Materials/Parts Technology Development Program from the Ministry of Trade,Industry,and Energy(MOTIE,Korea)(No.20019205)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部