摘要
Reactive oxygen species(ROSs)in Fenton process are of great importance in treating contaminants in wastewater.It is crucial to understand their chemical properties,formation,and reaction mechanisms with contaminants.This review summarizes the reactive oxygen species in Fenton process,including hydroxyl radical(·OH),superoxide radical(O_(2)·-),singlet oxygen(1O_(2)),hydroperoxyl radical(HO_(2)·),and high-valent iron.·OH shows a trend to react with chemistry groups with abundant electrons through H-atom abstraction,radical adduct formation and single electron transfer.Electron transfer is discovered to be an important pathway when1O_(2)degrades organic pollutants.Ring-opening andβ-scission are proposed to be the possible ways of1O_(2)to certain contaminants.Proton abstraction,nucleophilic substitution,and single electron transfer are proposed to explain how O_(2)·-degrade pollutants.As the conjugated acid of O_(2)·-,radical adduct formation and H-atom abstraction are reported for the reaction mechanisms of hydroperoxyl radical.High-valent iron in Fenton,namely Fe(IV),reacts with certain pollutants via single-or two-electron transfer.This review is important for researchers to understand the ROSs produced in Fenton and how they react with pollutants.
基金
supported by the National Natural Science Foundation of China(Nos.22176102 and 21806081)
Natural Science Foundation of Tianjin(No.19JCQNJC07900)
Fundamental Research Funds for the Central Universities
Natural Science Foundation of Jiangsu Province in China(No.BK20230410)
Natural Science Research of Jiangsu Higher Education Institution of China(No.23KJB610010)。