摘要
长城是具有历史文化、形态美学等多重意义的重要视觉景观资源,视觉感知计算分析是挖掘长城景观资源价值,呈现和阐释长城多维意义的重要路径。通过设计长城景观系统的语义特征点提取和编码规则,基于古北口长城资源本体和ALOS 12.5 m DEM数据生成了景观语义特征点,并对每个特征点进行视域分析得到可视域栅格;以景观视觉感知区位信息模型(LVPLM)为基础,选择NetCDF多维数据格式建立了古北口长城景观视觉感知区位数据集。数据集包括3部分:(1)人工选择语义特征点数据子集;(2)程序自动选择语义特征点数据子集;(3)验证点数据。(1)和(2)数据子集内容包括:(a)古北口长城本体要素与语义特征点矢量数据;(b)古北口长城景观视觉感知区位数据。数据集存储为.shp和.nc格式,由64个数据文件组成,数据量为6.58 GB(压缩为1个文件,63.8 MB)。
The Great Wall is a crucial visual landscape resource with multiple meanings such as history,culture,and morphological aesthetics.Visual perception calculation and analysis is an important approach to exploring the value of the landscape resources of the Great Wall and presenting and explaining the multidimensional significance of the Great Wall.In this dataset,by designing the semantic feature point extraction and coding rules of the Great Wall landscape system,the landscape semantic feature points are generated based on the ontology resources of the Gubeikou Great Wall and ALOS 12.5m DEM data,and the viewshed raster is obtained by analyzing each feature point.Then,based on the landscape visual perception location information model,the landscape visual perception location dataset of the Gubeikou Great Wall was constructed using the Net CDF multidimensional data format.The dataset consists of three parts:(1)the subset of semantic feature points data selected manually,(2)the subset of semantic feature points selected by a program automatically,and(3)verification points.Data subsets(1)and(2)include the vector data of ontology features and semantic feature points of the Gubeikou Great Wall and the visual perception location data of the Gubeikou Great Wall landscape.The dataset is stored in.shp and.nc formats,and it consists of 64 data files with a total data size of 6.58 GB(compressed into 1 file,63.8 MB).
作者
李照航
李仁杰
孙宝磊
李家慧
Li,Z.H.;Li,R.J.;Sun,B.L.;Li,J.H.(College of Geographical Sciences,Hebei Normal University,Shijiazhuang 050024,China;Geo Computation and Planning Center of Hebei Normal University,Shijiazhuang 050024,China;Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change,Shijiazhuang 050024,China)
出处
《全球变化数据学报(中英文)》
CSCD
2024年第1期32-41,V0032-V0041,共20页
Journal of Global Change Data & Discovery
基金
河北省自然科学基金(D2023205011)
国家自然科学基金(41471127)。
关键词
视觉感知区位
景观语义特征点
长城
NETCDF
visual perception location
landscape semantic feature points
the Great Wall
NetCDF