期刊文献+

基于改进A*算法的AGV路径规划研究

Research on AGV Path Planning Based on Improved A*Algorithm
下载PDF
导出
摘要 针对传统A*算法在自动引导车(Automated Guided Vehicle, AGV)寻路时存在搜索路径规划时间长、搜索效率低和不考虑AGV运行体积等问题,提出以动态加权方式改进启发式估计函数中启发因子,根据路径实际情况选择加权值,筛选搜索邻域时节点,剔除必然使路径代价值升高的方向,以增加障碍物影响半径的方式,避免AGV导航过程中发生碰撞。仿真结果表明,相比于原始A*算法,改进后的A*算法路径节点搜索数量减少82%,时间减少81%,提高了路径规划效率,且考虑AGV运行的安全半径,保证了AGV运行的安全性,避免在实际导航时发生碰撞。 Aiming at the problems of long search path planning time,low search efficiency and lack of consideration of AGV running volume in the traditional A*algorithm in Automated Guided Vehicle pathfinding,the heuristic factor in the heuristic estimation function is improved by dynamic weighting method,and the weighting value is selected according to the actual path situation.It filters and searches the neighborhood time points,eliminates the direction that is certain to inevitably increase the path generation value,and increase the influence radius of obstacles to avoid collision during AGV navigation.Simulation results show that compared with the original A*algorithm,the number of nodes searching is reduced by 82%and the search time is reduced by 81%,which improves the path planning efficiency.Moreover,the improved A*algorithm considers the safety radius of AGV operation and ensures the safety of AGV operation.Avoid collisions during actual navigation.
作者 张亚萌 王钧 符朝兴 ZHANG Yameng;WANG Jun;FU Chaoxing(College of Mechanical and Electrical Engineering,Qingdao University,Qingdao 266071,China)
出处 《青岛大学学报(工程技术版)》 CAS 2024年第3期13-19,共7页 Journal of Qingdao University(Engineering & Technology Edition)
基金 山东省自然科学基金资助项目(ZR2020QE183)。
关键词 A*算法 启发因子 自动引导车 路径规划 A*algorithm heuristic factor automated guided vehicle path planning
  • 相关文献

参考文献12

二级参考文献222

共引文献371

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部