摘要
采用基于泰勒级数展开的CSPH(corrective smoothed particle hydrodynamics)方法和Riemann解改进了光滑粒子流体动力学(SPH)方法,模拟了波浪与双消浪室有顶板开孔沉箱的相互作用。通过与试验数据的对比,验证了数值方法的准确性和适用性。分析了顶板高度s、消浪室宽度B和开孔率μ等因素对沉箱附近波面η和水平波压力p的影响。结果表明:在计算波浪条件下,顶板高度s和开孔率μ是沉箱波面峰值的主要影响因素,而消浪室宽度B对波面峰值的影响较小;同时,随着顶板高度s的增加,静水位处前开孔板和后实体墙的波压力峰值均逐渐减小,而后开孔板的波压力峰值先减小后增大。此外,改进后的SPH方法还可用于研究水粒子的压力场和速度场的情况,追踪水粒子在不同位置、不同时刻的瞬时速度,描述水粒子的运动状态,为研究波浪和开孔沉箱的相互作用提供了有效手段。
The corrective smoothed particle hydrodynamics(CSPH)method,based on Taylor series expansion,and the Riemann solver have been employed to improve the smoothed particle hydrodynamics(SPH)method.This enhanced method was used to simulate the interaction between waves and a top plate perforated caisson with a double wave-absorbing chamber.The accuracy and applicability of the numerical method were validated by comparing it with experimental data.The study analyzed the impact of the top plate height s,chamber width B,and perforated ratioμon the wave surfaceηand horizontal wave pressure p near the caisson.The results indicated that,under the given wave conditions,the top plate height s and perforated ratioμare the primary factors affecting the peak value of the wave surface around the caisson,while the chamber width B has a minor effect on the wave surface peak.Additionally,with an increase in the top plate height s,the wave pressure peak at the front perforated plate and the rear solid wall at the still water level gradually decreases,while the wave pressure peak at the rear perforated plate first decreases and then increases.Moreover,the improved SPH method can also be used to study the pressure and velocity fields of water particles,track the instantaneous velocity of water particles at different positions and times,and describe the motion state of water particles.This provides an effective means for studying the interaction between waves and perforated caissons.
作者
唐晓成
刘华宇
陈洪洲
史国家
方娟
付鹏帅
TANG Xiaocheng;LIU Huayu;CHEN Hongzhou;SHI Guojia;FANG Juan;FU Pengshuai(School of Civil Engineering,Jilin Jianzhu University,Changchun 130118,China;School of Marine Engineering Equipment,Zhejiang Ocean University,Zhoushan 316022,China;Department of Ecology and Safety,Jilin Luneng Manjiang Ecotourism Development Co.,Ltd.,Baishan 134512,China)
出处
《海洋工程》
CSCD
北大核心
2024年第5期130-141,共12页
The Ocean Engineering
基金
国家自然科学基金资助项目(42376205,51809039)
吉林省自然科学基金资助项目(YDZJ202201ZYTS407)。
关键词
双消浪室
开孔沉箱
SPH方法
水粒子速度场
顶板高度
波压力
double wave-absorbing chamber
perforated caisson
SPH method
water particle velocity field
top plate height
wave pressure