期刊文献+

基于最佳特征子集的自适应非视距身份识别系统

ADAPTIVE NON-LINE-OF-SIGHT IDENTIFICATION SYSTEM BASED ON BEST FEATURE SUBSET
下载PDF
导出
摘要 身份识别一直是安防领域的研究重点,其在非视距场景下的研究存在较大意义。针对识别的舒适度和隐私性问题,提出基于最佳特征子集的自适应非视距身份识别系统。通过有效结合多种预处理手段获取Wi-Fi信号的低维有用数据;提出鲁棒性人员检测方法截取有效片段;设计有监督特征提取方法,使用“前向搜索”获取最佳特征子集;改进传统Adaboost算法实现群体变化下的自适应识别。实验评估表明,当系统中志愿者为2~12人时,与相关系统和传统分类算法相比,均具有较好的性能。 Identification has always been the focus of research in the field of security,and its research in non-line-of-sight scenarios is of great significance.Aimed at comfort and privacy of recognition,a best feature subset based adaptive non-line-of-sight identification system is proposed.Low-dimensional useful data of Wi-Fi signals was obtained by effectively combining multiple preprocessing methods.A robust human detection method was proposed to intercept effective fragments.A supervised feature extraction method was designed,and"forward search"was employed to obtain the best feature subset.A traditional Adaboost algorithm was improved to realize adaptive recognition under group variation.Experimental evaluation shows that when the number of volunteers in system is 2~12,which has better performance compared with related systems and traditional classification algorithms.
作者 魏忠诚 张新秋 张世泽 冯浩 连彬 王巍 Wei Zhongcheng;Zhang Xinqiu;Zhang Shize;Feng Hao;Lian Bin;Wang Wei(School of Information and Electrical Engineering,Hebei University of Engineering,Handan 056038,Hebei,China;Hebei Key Laboratory of Security&Protection Information Sensing and Processing,Hebei University of Engineering,Handan 056038,Hebei,China;School of Water Conservancy and Hydroelectric Power,Hebei University of Engineering,Handan 056038,Hebei,China)
出处 《计算机应用与软件》 北大核心 2024年第10期77-86,共10页 Computer Applications and Software
基金 国家重点研发计划项目(2018YFF0301004) 国家自然科学基金项目(61802107) 河北省自然科学基金项目(F2018402251) 河北省高等学校科学技术研究项目(QN2020193) 石家庄市重点研发计划项目(201790571A)。
关键词 身份识别 非视距 Wi-Fi信号 最佳特征子集 ADABOOST算法 Identification Non-line-of-sight Wi-Fi signals The best feature subset Adaboost algorithm
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部