期刊文献+

A review on the applications of graph neural networks in materials science at the atomic scale

原文传递
导出
摘要 In recent years,interdisciplinary research has become increasingly popular within the scientific community.The fields of materials science and chemistry have also gradually begun to apply the machine learning technology developed by scientists from computer science.Graph neural networks(GNNs)are new machine learning models with powerful feature extraction,relationship inference,and compositional generalization capabilities.These advantages drive researchers to design computational models to accelerate material property prediction and new materials design,dramatically reducing the cost of traditional experimental methods.This review focuses on the principles and applications of the GNNs.The basic concepts and advantages of the GNNs are first introduced and compared to the traditional machine learning and neural networks.Then,the principles and highlights of seven classic GNN models,namely crystal graph convolutional neural networks,iCGCNN,Orbital Graph Convolutional Neural Network,MatErials Graph Network,Global Attention mechanism with Graph Neural Network,Atomistic Line Graph Neural Network,and BonDNet are discussed.Their connections and differences are also summarized.Finally,insights and prospects are provided for the rapid development of GNNs in materials science at the atomic scale.
出处 《Materials Genome Engineering Advances》 2024年第2期1-19,共19页 材料基因工程前沿(英文)
  • 相关文献

参考文献13

二级参考文献36

共引文献297

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部