期刊文献+

对中国省域用电负荷的时空交互分析

Spatial-temporal interaction analysis of provincial electricity load in China
下载PDF
导出
摘要 准确了解和分析电力的分布特征和空间变化趋势对于电力规划、能源管理以及社会可持续发展具有重要意义。本文运用空间自相关及探索性时空数据分析(ESTDA),对2000—2021年中国各省域用电负荷的空间结构和交互关系进行深入分析。研究发现:①2000—2021年间,全国各省的用电负荷之间具有较为显著的空间正相关性,且这种正相关性逐年稳步加强;②全国用电负荷的局部动态空间格局差异明显,其中东北地区具有更加显著的不稳定的局部空间结构;③全国各省的用电负荷的变化波动性从中心向四周逐渐减弱,即中心地区省份的用电负荷增长趋势较易受其他省份影响;④全国相邻省份之间的用电负荷的增长既存在竞争关系,也存在协同增长关系,但整体上以协同增长关系为主。 Accurately understanding and analyzing the distribution characteristics and spatial trends of electricity are of great significance for electricity planning,energy management,and social sustainability.This study used spatial autocorrelation and exploratory spatial-temporal data analysis(ESTDA)to conduct an in-depth analysis of the spatial structure and interaction relationships of electricity load in different provinces of China from 2000 to 2021.The research findings are as follows:①From 2000 to 2021,there was a significant positive spatial correlation among electricity loads in provinces across the country,and this positive correlation has steadily strengthened year by year.②The local dynamic spatial patterns of electricity load across the country exhibit significant variations,with the northeast region having a more pronounced and unstable local spatial structure.③The variability of the electricity load in provinces across the country gradually weakens from the center to the periphery,indicating that the growth trend of the electricity load in provinces located in central areas is more easily influenced by other provinces.④The growth of electricity load between neighboring provinces in China involves both competitive and cooperative growth relationships,but overall,cooperative growth predominates.
作者 简朴 JIAN Pu(School of Civil Engineering and Surveying&Mapping Engineering,Jiangxi University of Science and Technology,Ganzhou,Jiangxi 341000,China)
出处 《北京测绘》 2024年第10期1399-1405,共7页 Beijing Surveying and Mapping
关键词 用电负荷 探索性时空数据分析(ESTDA) 局部自相关(LISA)时间路径 空间自相关 地理信息系统(GIS) electricity load exploratory spatial-temporal data analysis(ESTDA) local indicators of spatial association(LISA)time paths spatial autocorrelation geographic information system(GIS)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部