摘要
利用不同时间序列间的相关性和依赖性基于深度神经网络(DNNs)提出了两种不同的多元长短期记忆网络(LSTM)光伏输出功率预测方法,充分考虑了空气温度、风速等影响因素之间的相关性特征。以光伏发电站运行数据为例,通过对光伏发电预测模型进行训练和测试,并与单变量LSTM和Stacked-LSTM模型的结果进行比较,研究结果表明,所提的Conv-LSTM可以在减少30.76%训练时间的基础上提升0.71%~1.33%的准确度,Conv-LSTM和Multi-LSTM分别以高达93.12%和96.12%的准确度跟踪实际光伏发电。
In this paper,two different multivariate long-and short-term memory(LSTM)network PV output power prediction methods are proposed based on deep neural networks(DNNs)by utilizing the correlation and dependence between different time series,with full consideration of the correlation characteristics between air temperature,wind speed and other influencing fac-tors.Taking the PV power plant operation data as an example,by training and testing the PV power prediction model and com-paring the results with those of the univariate LSTM and Stacked-LSTM models,the results of the study show that the pro-posed Conv-LSTM can improve the accuracy by 0.71%~1.33%on the basis of reducing the training time by 30.76%,and the Conv-LSTM and Multi-LSTM track real PV with up to 93.12%and 96.12% accuracy.
作者
王艳芹
妙红英
周凤华
张海宁
王禹霖
WANG Yanqin;MIAO Hongying;ZHOU Fenghua;ZHANG Haining;WANG Yulin(State Grid Jibei Electric Power Co.,Ltd.,Chengde Power Supply Company,Chengde 067000,China)
出处
《微型电脑应用》
2024年第10期101-104,共4页
Microcomputer Applications
基金
国家电网公司科技项目(520940210009)。
关键词
光伏发电预测
卷积神经网络
深度神经网络
长短期记忆网络
photovoltaic power forecasting
convolutional neural network
deep neural networks
long short-term memory net-work