摘要
针对电液位置伺服系统存在外部不确定性扰动和非线性等问题,采用基于敏感度分析(SA)和粒子群优化(PSO)的径向基函数(SAPSO-RBF)神经网络设计电液位置伺服控制系统。利用SAPSO-RBF神经网络估计伺服系统模型中的未知参数并设计伺服系统滑模控制器,同时搭建双出杆对称液压缸电液位置伺服控制系统实验装置。SAPSO-RBF神经网络滑模控制方法与传统滑模控制方法对比实验结果表明,SAPSO-RBF神经网络滑模控制方法具有更高的跟踪精度、更强的鲁棒性,并且系统抖振得到了有效抑制。
The electro-hydraulic position servo system has the problems of external disturbance and nonlinearity.This paper designs a control system for the electro-hydraulic position servo system based on sensitivity analysis(SA)and particle swarm optimization(PSO)for the radial basis function(SAPSO-RBF)neural network.The SAPSO-RBF neural network is used to estimate the unknown parameters in the servo system model,and a sliding mode controller for the servo system is designed.An experimental setup for the dual output symmetrical hydraulic cylinder electro-hydraulic position servo system is constructed.The proposed SAPSO-RBF neural network sliding mode control and traditional sliding mode control are experimentally verified.The experimental results show that the SAPSO-RBF neural network sliding mode control method has higher tracking accuracy,higher robustness,and effectively suppresses the system’s chattering.
作者
程亮
董子健
赵晶
刘轩
张金营
CHENG Liang;DONG Zijian;ZHAO Jing;LIU Xuan;ZHANG Jinying(Experimental Center,Handan College,Handan 056005,Hebei,China;School of Control and Computer Engineering,North China Electric Power University,Baoding 071003,Hebei,China;China Energy Investment Co.,Ltd.,Beijing 100011,China)
出处
《实验室研究与探索》
CAS
北大核心
2024年第10期10-15,共6页
Research and Exploration In Laboratory
基金
国家重点研发计划项目(2018YFB0604204)
邯郸市科学技术研究与发展计划项目(23422901097)。
关键词
电液位置伺服控制系统
敏感度分析
粒子群优化
滑模控制器
实验装置设计
electro-hydraulic position servo control system
sensitivity analysis
particle swarm optimization
sliding mode controller
experimental device design