摘要
本文探讨了人工智能技术,尤其是机器学习和自然语言处理技术在失效分析领域的应用与发展趋势。失效分析是确保设备可靠性和安全性的重要手段,广泛应用于航空航天、汽车制造、电子设备等领域。传统的失效分析方法通常依赖专家经验,而人工智能技术凭借其强大的数据处理能力,与传统方法相结合,极大地提升了分析的精度和效率。在失效模式诊断方面,人工智能技术能够快速准确地识别各种故障模式,并提供精确的诊断结果;在失效原因诊断中,人工智能通过整合多种数据来源,揭示复杂的失效因素和潜在的因果关系,提升了诊断的可靠性;在失效预测方面,机器学习技术能够精确预测材料的寿命和强度,减少实验时间和成本;在失效预防方面,人工智能技术提供了新的思路,能够有效降低失效发生的风险,减少产品维护成本。本文还展望了人工智能技术在失效分析领域的发展前景,提出了在数据质量提升、模型优化、跨学科合作以及伦理与安全等方面的挑战与建议。
This paper explores the application and development trends of artificial intelligence(AI)technology,particularly machine learning and natural language processing in the field of failure analysis.Failure analysis is a crucial method for ensuring the reliability and safety of equipment,and is widely used in aerospace,automotive manufacturing,electronic devices,and other fields.Traditional failure analysis methods often rely on expert experience,which is time-consuming and laborious.By integrating AI’s powerful data processing capabilities with traditional methods,the accuracy and efficiency of analysis have been significantly enhanced.In terms of failure mode diagnosis,AI can rapidly and accurately identify various fault modes and provide precise diagnostic results.In failure cause diagnosis,AI integrates data from multiple sources to uncover complex failure factors and potential causal relationships,improving diagnostic reliability.In failure prediction,machine learning can accurately forecast material lifespan and strength,reducing experimental time and costs.In failure prevention,AI offers new approaches to effectively reduce the risk of failure and lower product maintenance costs.The paper also looks forward the future development prospects of AI in failure analysis and highlights challenges and recommendations in the areas,such as data quality improvement,model optimization,interdisciplinary collaboration,and ethical and safety issues.
作者
李桌汉
有移亮
赵子华
骆红云
吴素君
张峥
钟群鹏
LI Zhuohan;YOU Yiliang;ZHAO Zihua;LUO Hongyun;WU Sujun;ZHANG Zheng;ZHONG Qunpeng(School of Materials Science and Engineering,Beihang University,Beijing 100191,China)
出处
《航空材料学报》
CAS
CSCD
北大核心
2024年第5期1-16,共16页
Journal of Aeronautical Materials
基金
国家科技重大专项(J2019-Ⅵ-0022-0138)。
关键词
人工智能
机器学习
自然语言处理
失效分析
失效诊断
寿命预测
失效预防
artificial intelligence
machine learning
natural language processing
failure analysis
failure diagnosis
life prediction
failure prevention