期刊文献+

Existence and Uniqueness for the Non-Compact Yamabe Problem of Negative Curvature Type

原文传递
导出
摘要 We study existence and uniqueness results for the Yamabe problem on non-compact manifolds of negative curvature type.Ourfirst existence and uniqueness result concerns those such manifolds which are asymptotically locally hyperbolic.In this context,our result requires only a partial C2 decay of the metric,namely the full decay of the metric in C1 and the decay of the scalar curvature.In particular,no decay of the Ricci curvature is assumed.In our second result we establish that a local volume ratio condition,when combined with negativity of the scalar curvature at infinity,is sufficient for existence of a solution.Our volume ratio condition appears tight.This paper is based on the DPhil thesis of thefirst author.
出处 《Analysis in Theory and Applications》 CSCD 2024年第1期57-91,共35页 分析理论与应用(英文刊)
基金 supported by the EPSRC Centre for Doctoral Training in Partial Differential Equations(grant number EP/L015811/1).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部