摘要
该研究专注于提升无人农场联合收获机在复杂地形作业时,割台高度控制的精确性与响应速度。首先,提出了一种基于双倾角传感器的高度检测补偿方法,通过最小二乘法拟合建立割台倾角与高度的相关模型,相关系数0.9958,显著提高测量准确性。随后,引入群智能算法优化的PID控制策略,利用Bernoulli混沌映射、粒子群算法(PSO)、t分布扰动改进蜣螂优化算法,解决了传统PID控制的精度低和响应慢等问题。基于这些优化,IDBO-PID控制器在仿真对比中相较于DBO-PID和传统PID,具有更优的响应速度和稳定性。试验验证表明,改进的控制策略使割台的上升速度达到0.44m/s、下降速度达到0.32m/s,并且高度误差控制在0.02m内,满足作业需求。
This research focused on improving performance of unmanned farm combine harvesters in complex terrain,especially precision and response speed of cutting table height control.A height detection compensation method based on double inclination sensors was proposed.Correlation model between inclination angle and height of cutting table was established by fitting least square method,and correlation coefficient was 0.9958,which significantly improved measurement accuracy.Then,PID control strategy optimized by swarm intelligence algorithm was introduced,Bernoulli chaotic mapping,particle swarm optimization(PSO)and T-distribution perturbation were used to improve dung beetle optimization algorithm,which solved problem of low precision and slow response of traditional PID control.Based on these optimization,IDBO-PID controller has better response speed and stability than DPO-PID and traditional PID in simulation comparison.Experimental results showed that improved control strategy could make rise speed of cutting table reach 0.44 m/s,fall speed reach 0.32 m/s,and height error was controlled within 0.02 m,which could meet operation requirements.
作者
张峰硕
苑严伟
刘阳春
王洋
杨悦
ZHANG Fengshuo;YUAN Yanwei;LIU Yangchun;WANG Yang;YANG Yue(College of Engineering and Technology,Jilin Agricultural University,Changchun Jilin 130118,China;Chinese Academy of Agricultural Mechanization Sciences Group Co.,Ltd.,Beijing 100083,China)
出处
《农业工程》
2024年第10期21-28,共8页
AGRICULTURAL ENGINEERING
基金
国家重点研发计划项目(2021YFD2000601)。
关键词
无人农场
联合收获机
割台高度
双倾角传感器
改进蜣螂优化算法
IDBO-PID
unmanned farm
combine harvester
cutting table height
double tilt angle sensor
improved dung beetle optimization algorithm
IDBO-PID