摘要
The hydro-geochemistry and isotopic variations in groundwater,coupled with sediment geochemistry,were investigated in the Middle Gangetic Plain,India,to better understand the aquifer dynamics that influence the arsenic(As)evolution and mobilization.Eighty-four groundwater samples,thirteen River water samples,and two sediment cores(33 mbgl)were studied.The samples were analyzed for major ions and trace metals,including As and stable isotopic variability(δ^(2)H,δ^(18)O,andδ^(13)C).The study area was categorized into older and younger alluvium based on existing geomorphological differences.Younger alluvium exhibits higher As enrichment in sediment and groundwater,ranging of 2.59–31.52 mg/kg and bdl to 0.62 mg/L.Groundwater samples were thermodynamically more stable with As(OH)_(3)species ranging from 88.5%to 91.4%and FeOOH from 69%to 81%,respectively.PHREEQC and mineralogical analysis suggested goethite and siderite act as a source and sink for As.However,statistical analysis suggested reductive dissolution as the primary mechanism for As mobilization in the study area.Spatio-temporal analysis revealed elevated concentrations of As in the central and northeastern regions of the study area.Stable isotope(δ^(2)H andδ^(18)O)analysis inferred active recharge conditions primarily driven by precipitation.The depleted d-excess value and enrichedδ^(18)O in the groundwater of younger alluvium indicate the effect of groundwater recharge with significant evaporation enrichment.Groundwater recharge potentially decreased the quantity of arsenic in groundwater,whereas evaporation enrichment increased it.Rainwater infiltration during recharge introduces oxygenated water into the aquifer,leading to changes in the redox conditions and facilitating biogeochemical reactions.The carbon isotope(δ^(13)C)results suggest that high microbial activity in younger alluvium promotes As leaching from sediment into the groundwater.
基金
funded by the Ministry of Earth Sciences(MoES)under the Geochronology project[MoES/P.O.(Seismic)8(09)-Geochron/2012]。