期刊文献+

Understanding arsenic behavior in alluvial aquifers:Evidence from sediment geochemistry,solute chemistry and environmental isotopes

原文传递
导出
摘要 The hydro-geochemistry and isotopic variations in groundwater,coupled with sediment geochemistry,were investigated in the Middle Gangetic Plain,India,to better understand the aquifer dynamics that influence the arsenic(As)evolution and mobilization.Eighty-four groundwater samples,thirteen River water samples,and two sediment cores(33 mbgl)were studied.The samples were analyzed for major ions and trace metals,including As and stable isotopic variability(δ^(2)H,δ^(18)O,andδ^(13)C).The study area was categorized into older and younger alluvium based on existing geomorphological differences.Younger alluvium exhibits higher As enrichment in sediment and groundwater,ranging of 2.59–31.52 mg/kg and bdl to 0.62 mg/L.Groundwater samples were thermodynamically more stable with As(OH)_(3)species ranging from 88.5%to 91.4%and FeOOH from 69%to 81%,respectively.PHREEQC and mineralogical analysis suggested goethite and siderite act as a source and sink for As.However,statistical analysis suggested reductive dissolution as the primary mechanism for As mobilization in the study area.Spatio-temporal analysis revealed elevated concentrations of As in the central and northeastern regions of the study area.Stable isotope(δ^(2)H andδ^(18)O)analysis inferred active recharge conditions primarily driven by precipitation.The depleted d-excess value and enrichedδ^(18)O in the groundwater of younger alluvium indicate the effect of groundwater recharge with significant evaporation enrichment.Groundwater recharge potentially decreased the quantity of arsenic in groundwater,whereas evaporation enrichment increased it.Rainwater infiltration during recharge introduces oxygenated water into the aquifer,leading to changes in the redox conditions and facilitating biogeochemical reactions.The carbon isotope(δ^(13)C)results suggest that high microbial activity in younger alluvium promotes As leaching from sediment into the groundwater.
出处 《Geoscience Frontiers》 SCIE CAS CSCD 2024年第5期222-238,共17页 地学前缘(英文版)
基金 funded by the Ministry of Earth Sciences(MoES)under the Geochronology project[MoES/P.O.(Seismic)8(09)-Geochron/2012]。
  • 相关文献

参考文献1

二级参考文献3

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部