期刊文献+

基于深度学习的盾构姿态预测及纠偏研究

Study on Shield Attitude Prediction and Deflection Correction Based on Deep Learning
下载PDF
导出
摘要 以苏州某在建隧道工程为研究背景,基于机器学习技术提出一种盾构姿态预测模型和纠偏方法。首先通过卷积神经网络挖掘盾构姿态数据的空间特征,然后通过双向长短期记忆神经网络挖掘数据的时序特征,紧接着通过注意力机制挖掘重要的时间特征信息。在预测结果的基础上,引入Apriori算法对盾构数据的关联规则提取,并提出盾构姿态纠偏方法。实验结果表明该文提出的盾构姿态预测模型具有较好的泛化能力,且相较于选取的3种基准模型,得到的均方根误差和平均绝对误差值最小,具有更高的预测精度。基于姿态理论控制模型,构建多环姿态控制模型,实现对姿态调整获取参数建议值,为智能化姿态控制提供参考依据。 Taking a tunnel project under construction in Suzhou as the research background,this paper proposes a shield attitude prediction model and correction method based on the machine learning technology.Firstly,the spatial features of shield posture data were mined through a convolutional neural network.Then,the temporal features of data were mined through a bidirectional long short-term memory neural network.Afterwards,the important temporal feature information was mined through the attention mechanism.On the basis of the prediction results,the Apriori algorithm is introduced to extract the association rules of shield data,and the shield attitude correction method is proposed.Experiments show that the proposed prediction model in this paper has good generalizability.Compared to the three selec-ted baseline models,it achieves the smallest root mean square error and mean absolute error values,indicating higher prediction accuracy.Based on the attitude theory control model,a multi-loop attitude control model is constructed to obtain parameter suggestions for attitude adjustment,which provides a theoretical reference for intelligent attitude control.
作者 桂林 王飞 张雯超 GUI Lin;WANG Fei;ZHANG Wenchao(Suzhou Rail Transit Group,Suzhou,Jiangsu 215000,China;School of Architecture and Engineering,Nantong Vocational University,Nantong,Jiangsu 226007,China)
出处 《河北工程大学学报(自然科学版)》 CAS 2024年第4期82-89,共8页 Journal of Hebei University of Engineering:Natural Science Edition
基金 国家自然科学基金资助项目(51978430) 中天控股集团技术研发项目(ZTCG-GDJTYJS-JSKF-2021001)。
关键词 盾构隧道 机器学习 姿态预测 纠偏方法 注意力机制 shield tunnelling machine learning attitude prediction correction method attention

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部