摘要
针对一类带有间断系数的非线性定常对流扩散方程,提出了一种高精度的紧致有限差分方法;该方法在内点处采用的是三点四阶的差分格式,在边界点与间断点处采用的是两点三阶的差分格式;给出的数值算例表明这种新的方法整体求解精度可以达到四阶。
A high-order accuracy compact finite difference method was developed to solve nonlinear steady-state convection diffusion equations with discontinuous coefficients.Three-point fourth-order accurate difference schemes were used for the inner points,and two-point third-order accurate difference schemes were applied to the boundary points and discontinuous point.Numerical example shows that the present new method can reach fourth-order accuracy globally.
作者
陈雪钦
王晓峰
晏云
CHEN Xueqin;WANG Xiaofeng;YAN Yun(School of Biological Science and Biotechnology,Minnan Normal University,Zhangzhou Fujian 363000,China;School of Mathematics and Statistics,Minnan Normal University,Zhangzhou Fujian 363000,China)
出处
《莆田学院学报》
2024年第5期33-38,共6页
Journal of putian University
基金
福建省自然科学基金面上项目(2022J01897)
福建省中青年教师教育科研项目(JAT200295)。
关键词
非线性对流项
对流扩散方程
高精度
间断
定常
有限差分
nonlinear convection term
convection diffusion equation
high-order accuracy
discontinuity
steady-state
finite difference