期刊文献+

注意力机制和多目标粒子群混合驱动的配电网无功优化

Hybrid-Driven Reactive Power Optimization for Distribution Networks Driven by Attentional Mechanisms and Multi-Objective Particle Swarms
下载PDF
导出
摘要 配电网安全稳定运行的关键之一是解决好配电网的无功功率平衡,尤其是高比例分布式光伏无序接入条件下,挑战巨大。为此,提出了一种注意力机制和多目标粒子群混合驱动的高比例分布式光伏配电网无功优化方法。首先,针对光伏出力强不确定性而预测难的问题,提出了基于Transformer的光伏预测模型,并与长短期记忆网络(long short-term memory,LSTM)以及卷积神经网络(convolutional neural networks,CNN)神经网络进行对比,验证了所提模型的精确性。进一步,针对强间歇性的分布式光伏高比例接入配电网的无功优化难题,提出了一种基于注意力机制的多目标粒子群算法(multi-objective particle swarm optimization algorithm based on attention mechanism,AMOPSO),将注意力机制应用于多目标粒子群算法,从而可减少粒子群算法本身不必要的搜索范围,有效地避免陷入局部最优,获得高比例分布式光伏配电网无功优化的调度策略。最后,在改进的IEEE33节点配电网系统中进行算例分析,验证了所提算法的有效性。 One of the keys to the safe and stable operation of distribution networks is to solve the reactive power balance,especially under the conditions of high proportion distributed photovoltaic disorderly access.Therefore,this article first addresses the strong uncertainty in photovoltaic output and difficulty in prediction.A Transformer based photovoltaic prediction model is proposed and compared with long short-term memory(LSTM)and convolutional neural networks(CNN)to verify the accuracy of the proposed model.Furthermore,a multiobjective particle swarm optimization algorithm based on attention mechanism(AMOPSO)is proposed to deal with difficulties in reactive power optimization in high proportion distributed photovoltaic distribution networks.The attention mechanism is applied to the multi-objective particle swarm algorithm,which can reduce the unnecessary search range of the particle swarm algorithm itself and effectively avoid falling into local optimization.Finally,a numerical example analysis is conducted in the improved IEEE33 node distribution network system,and the effectiveness of the proposed algorithm is verified through comparative analysis with particle swarm optimization and multi-objective particle swarm optimization.
作者 徐涛 李互刚 杨龙雨 郭梦琪 XU Tao;LI Hugang;YANG Longyu;GUO Mengqi(Shizuishan Power Supply Company,State Grid Ningxia Electric Power Co.,Ltd.,Shizuishan 753000,Ningxia,China;School of Artificial Intelligence,Anhui University,Hefei 230601,Anhui,China)
出处 《电网与清洁能源》 CSCD 北大核心 2024年第7期146-154,共9页 Power System and Clean Energy
基金 国家电网有限公司科技项目(5229SZ230003)。
关键词 光伏出力预测 Transformer模型 配电网无功优化 注意力机制 多目标粒子群算法 photovoltaic output prediction transformer model reactive power optimization of distribution network attention mechanism multi-objective particle swarm optimization algorithm
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部