期刊文献+

深度聚类算法在SuperDARN雷达目标回波分类中的应用

Application of Deep Clustering Algorithm in Target Echo Classification of SuperDARN Radar
下载PDF
导出
摘要 SuperDARN雷达目标回波中通常包含多种类型散射的回波,例如电离层不规则体回波、地面/海面散射回波、极区中层夏季回波以及流星余迹回波等.利用SuperDARN采集的电离层回波制作的电离层对流图对于空间天气研究具有重要意义.SuperDARN接收到的电离层回波通常会与地面海面的散射回波混淆,从而造成绘制的电离层对流图不准确,因此对于SuperDARN目标回波进行聚类分析具有重要意义.本文首次将基于自动编码器网络的图嵌入深度聚类算法应用于SuperDARN目标回波数据,有效地对SuperDARN回波数据进行了分类.此外,还将该模型与传统算法和机器学习聚类算法进行了比较.该模型在样本数据中的应用表明,深度聚类算法能够捕捉到回波数据的深层结构特征,提高了回波聚类的准确性. SuperDARN radar target echoes usually contain echoes of various types of scattering,such as ionospheric irregularities,ground/sea scatter echoes,polar mesosphere summer echoes and meteor trail echoes.The ionospheric echoes collected by SuperDARN radar are used to map the ionospheric convection to study the large-scale dynamics of the magnetosphere-ionospheric system,which is of great significance for space weather observation and exploration.In general,the scattered ionospheric echoes received by SuperDARN are often mixed with the scattered echoes from the ground or the sea,resulting in inaccurate ionospheric convection maps.Therefore,cluster analysis of SuperDARN target echoes is of great significance.Traditionally,ground/sea scattering is determined by the lower threshold of the combination of velocity and spectral width,but the scope of use of this method is limited,and there is ambiguity for the echoes in the mid-latitude region.In order to avoid the influence of latitude conditions and reduce the omission of useful information in the data,multiple data features of the radar target echo are collected as much as possible,such as line-of-sight Doppler velocity,the spectral width,backscatter power and the elevation angle of arrival.In this paper,the graph embedding deep clustering algorithm based on autoencoder network is applied to SuperDARN target echo data for the first time,and SuperDARN echo data is effectively classified.In addition,two different types of machine learning clustering algorithms are introduced to compare with this model.The deep clustering model,traditional classification algorithm and machine learning clustering algorithm are applied to the same echo data set,and the clustering results of different clustering algorithms are compared.The application of different clustering models on sample data sets and the evaluation of clustering indexes show that the deep clustering algorithm can capture the deep structural features of the echo data,effectively compress and reduce the dimensionality of the high-dimensional data set,make full use of the useful information in the data set,and improve the precision of the target echo data clustering of SuperDARN radar.
作者 孔星 刘二小 陈烽聚 乔磊 KONG Xing;LIU Erxiao;CHEN Fengju;QIAO Lei(College of Communication Engineering,Hangzhou Dianzi University,Hangzhou 310018)
出处 《空间科学学报》 CAS CSCD 北大核心 2024年第5期806-817,共12页 Chinese Journal of Space Science
基金 国家重点研发计划项目(2018YFC1407304,2018YFC1407300,2022YFC2807205) 国家自然科学基金项目(41974185)共同资助。
关键词 SuperDARN雷达 深度聚类 自动编码器模型 K-MEANS聚类 SuperDARN radar Deep clustering Automatic encoder model K-means clustering
  • 相关文献

参考文献4

二级参考文献32

  • 1邓忠新,刘瑞源,赵正予,杨惠根,徐中华.中山站电离层尖峰脉冲型吸收统计特性[J].空间科学学报,2006,26(3):172-176. 被引量:5
  • 2石雁祥,葛德彪,吴健.尘埃等离子体微波衰减常数的理论分析[J].地球物理学报,2007,50(4):1005-1010. 被引量:15
  • 3Hu H Q, Liu R Y, Yang H G. The auroral occurrence over Zhongshan Station, Antarctica. Chinese Journal of Polar Science, 1999, 10(2): 101-109.
  • 4Chisham G, Lester M, Milan S E, et al. A decade of the Super Dual Auroral Radar Network (SuperDARN): scientific achievements, new techniques and future directions. Surv. Geophys., 2007, 28(1): 33-109.
  • 5Greenwald R A, Baker K B, Dudeney J R, et al. DARN/ SuperDARN. Space. Sci. Rev., 1995, 71(1-4): 761-796.
  • 6Ruohoniemi J M, Greenwald R A. Rates of scattering occurrence in routine HF radar observations during solar cycle maximum. Radio Science, 1997, 32(3) : 1051-1070.
  • 7Ruohoniemi J M, Greenwald R A, Villain J P, et al. Coherent HF radar baekseatter from small-scale irregularities in the dusk sector of the subauroral ionosphere. Journal of Geophysical Research, 1988, 93(A11): 12871-12882.
  • 8Nishitani N, Ogawa T, Sato N, et al. Averaged pattern of ionospheric echo region and convection: initial results from the Syowa station HF radar. // Proc. NIPR Syrup. Upper Atmos. Phys, 1997, 10, 42-49.
  • 9Milan S E, Yeoman T K, Lester M, et al. Initial backscatter occurrence statistics from the CUTLASS HF radars. Ann. Geophys., 1997, 15(6): 703-718.
  • 10Villain J P, Andre R, Pinnock M, et al. A statistical study of the Doppler spectral width of high-latitude ionospheric Fregion echoes recorded with SuperDARN coherent HF radars. Ann. Geophys, 2002, 20(11): 1769-1781.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部