摘要
单相接地故障(single-phase-to-ground fault,SPGF)是配电网中最常见的故障,严重影响配电系统的可靠性和安全性,准确辨识SPGF可以提高配电网接地故障处理的精细化水平。首先,从故障波形中提取能有效反映不同接地故障原因的多域特征组成候选波形特征集,通过多元方差法分析波形特征与接地故障原因的相关性,筛选识别接地故障原因的有效特征;然后,分别设计基于极限学习机和支持向量机的故障原因辨识模型,利用Dempster-Shafer(D-S)证据融合理论对模型的识别结果进行融合,建立了接地故障原因综合辨识模型;最后,基于现场数据对所建立的综合辨识模型的有效性进行了验证,结果表明综合辨识模型优于任何单一辨识模型,验证了该模型的优势和可行性。
Single-phase-to-ground fault(SPGF),being the most prevalent issue in distribution networks,significantly impacts the reliability and safety of the distribution system.Accurate identification of SPGF can enhance the level of refinement in handling grounding faults in distribution networks.Firstly,a set of candidate waveform features that effectively reflect various grounding fault causes is extracted from the fault waveforms.These features are then subjected to multivariate analysis of variance(MANOVA)to assess their correlation with grounding fault causes,thereby selecting effective features for identifying the root causes.Subsequently,fault cause identification models based on Extreme Learning Machine(ELM)and Support Vector Machine(SVM)are designed respectively.These models'recognition results are fused using Dempster-Shafer(D-S)theory of evidence fusion,establishing a comprehensive identification model for grounding fault causes.Finally,the validity of the established comprehensive identification model is verified based on field data,demonstrating its superiority over any single identification model and confirming its feasibility.This work is supported by Science and technology project of Inner Mongolia Electric Power(Group)Co.,Ltd.(No.2022JBGS0044).
作者
胡云鹏
都成刚
齐军
郑日红
阿敏夫
张浩
梁永亮
HU Yunpeng;DU Chenggang;QI Jun;ZHENG Rihong;A Minfu;ZHANG Hao;LIANG Yongliang(NR Electric Co.,Ltd.Nanjing,Nanjing 211102,China;Alxa Power Supply Branch,Inner Mongolia Electric Power(Group)Co.,Ltd.Alxa League,Inner Mongolia 750306,China;Inner Mongolia Electric Power(Group)Co.,Ltd.Hohhot,Inner Mongolia 010010,China;School of Electrical Engineering,Shandong University.Jinan 250061,China)
出处
《中国电力》
CSCD
北大核心
2024年第10期133-142,共10页
Electric Power
基金
内蒙古电力(集团)有限责任公司科技项目(2022JBGS0044)。
关键词
接地故障原因
单相接地故障
极限学习机
支持向量机
D-S证据理论
ground fault cause
single-phase-to-ground fault
extreme learning machine
support vector machine
D-S evidence theory.