期刊文献+

前沿科研成果融入分析化学实验教学——高亮度荧光聚合物纳米颗粒的合成及表征

Integrating Frontier Scientific Research into Analytical Chemistry Experiment Teaching:Synthesis and Characterization of High-Brightness Fluorescent Polymer Nanoparticles
下载PDF
导出
摘要 荧光纳米颗粒在生物成像、传感和诊断等领域展现了广阔的应用前景。然而,传统的有机染料常受到聚集导致荧光猝灭效应的限制。本文以自组装聚合物纳米颗粒的制备和表征为例,将反离子增强荧光策略引入分析化学实验教学,为学生提供了一种新型荧光增强方法的实践体验。通过这一实验,学生能够掌握聚合物纳米颗粒的合成、表征技术及反离子增强荧光发射的原理,深入理解荧光聚集导致猝灭效应及其解决方法。该实验设计不仅有效提升了学生对分析化学知识的理解和应用能力,还拓展了其对纳米材料科学的认知,为未来在相关领域的研究奠定了坚实基础。 Fluorescent nanoparticles hold immense potential in various applications,including bioimaging,sensing,and diagnostics.However,traditional organic dyes often suffer from aggregation-caused quenching(ACQ)effects.This paper introduces an innovative approach to enhance fluorescence by incorporating the counterion-enhanced strategy into analytical chemistry experiment teaching,exemplified by the synthesis and characterization of self-assembled polymer nanoparticles.This experiment provides students with practical experience in a novel fluorescence enhancement method.Through this hands-on experience,students can master the techniques for synthesizing and characterizing polymer nanoparticles,understand the principle of counterion-enhanced fluorescence,and gain a deeper insight into the ACQ effect and its solutions.This experimental design not only effectively improves students'understanding and application of analytical chemistry knowledge but also broadens their knowledge of nanomaterial science,laying a solid foundation for future research in relevant fields.
作者 郭超 王一男 杨冬芝 Guo Chao;Wang Yinan;Yang Dongzhi(Xuzhou Medical University,Xuzhou 221004,China)
机构地区 徐州医科大学
出处 《广东化工》 CAS 2024年第20期223-225,共3页 Guangdong Chemical Industry
基金 中华医学会医学教育分会医学教育研究课题(2023B306) 江苏省教育科学“十四五”规划重点课题(B/2022/01/18) 徐州医科大学优秀人才科研启动经费(D2022025)。
关键词 荧光纳米颗粒 两亲性聚合物 聚集导致荧光猝灭 反离子增强荧光 实验教学 fluorescent nanoparticles amphiphilic polymers aggregation-caused quenching counterion-enhanced fluorescence experimental teaching
  • 相关文献

参考文献1

二级参考文献53

  • 1Conca E, Aresti M, Saba M, Casula M F, Quochi F, Mula G, Loche D, Kim M R, Manna L, Corrias A, Mura A. BongiovanniG. Nanoscale. , 2014, 6(4): 2238-2243.
  • 2Ambrosone A, Mattera L, Marchesano V, Quarta A, Susha A S, Tino A, Rogach A L, Tortiglione C. Biomaterials. , 2012, 33(7) : 1991-2000.
  • 3Trung N N, Luu Q P, Son B T, Sinh L H, Bae J Y. J. Nanosci. Nanotechno. , 2013, 13(1) : 434-442.
  • 4Zhan N, Palui G, Sail M, Ji X, Mattoussi H. J. Am. Chem. Soc. , 2013, 135(37) : 13786-13795.
  • 5Yildiz I, Tomasulo M, Raymo F M. P. Natl. Acad. Sci. USA, 2006, 103(31) : 11457-11460.
  • 6Bavireddi H, Kikkeri R. Analyst, 2012, 137(21): 5123-5127.
  • 7Hu M, Yu H, Wei F, Xu G, Yang J, Cai Z, Hu Q. Spectrochim. ActaA Mol. , Biomol. Spectrosc. , 2012, 91:130-135.
  • 8Kalwarczyk E, Ziebacz N, Kalwarczyk T, Holyst R, Fialkowski M. Nanoscale. , 2013, 5(20) : 9908-9916.
  • 9Groeneveld E, Witteman L, Lefferts M, Ke X, Bals S, van Tendeloo G, Donega C M. Acs. Nano. , 2013, 7 (9): 7913-7930.
  • 10Liang Y, Thome J E, Parkinson B. Langmuir, 2012, 28(30) : 11072-11077.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部