期刊文献+

基于振动信号的带式运输机轴承故障诊断

Fault Diagnosis of Belt Conveyor Bearing Based on Vibration Signal
下载PDF
导出
摘要 针对带式运输机轴承故障,提出一种基于振动信号的轴承故障诊断方法。首先,通过位移传感器采集轴承振动信号;其次,采用小波变换对振动信号进行时频域特征提取,以捕捉信号在不同频率和时间尺度下的局部特征;最后,利用决策树方法分类提取的特征向量,实现对不同轴承故障类型的识别。基于凯斯西储大学轴承数据集进行实验验证,基于多项指标验证该方法的有效性和健壮性。 In this paper,a bearing fault diagnosis method based on vibration signal for belt conveyor is proposed.Firstly,bearing vibration signal is collected by displacement sensor.Secondly,wavelet transform is used to extract the features of vibration signals in time-frequency domain to capture the local features of signals at different frequencies and time scales.Finally,decision tree method is used to classify the extracted feature vectors to realize the identification of different bearing fault types.Based on Case Western Reserve University bearing data set,the validity and robustness of the proposed method are verified by experiments.
作者 匡中高 KUANG Zhonggao(Secondary Vocational School in Weining Autonomous County,Bijie 553100)
出处 《现代制造技术与装备》 2024年第10期173-175,共3页 Modern Manufacturing Technology and Equipment
关键词 带式运输机 轴承 振动信号 故障诊断 决策树 belt conveyor bearings vibration signal fault diagnosis decision tree
  • 相关文献

参考文献6

二级参考文献72

  • 1张琳,孙安全,王天一,杨新宇,张学礼.某型导弹装备的故障智能诊断[J].中南大学学报(自然科学版),2013,44(S1):216-220. 被引量:4
  • 2高金吉.装备系统故障自愈原理研究[J].中国工程科学,2005,7(5):43-48. 被引量:46
  • 3石林锁.滚动轴承故障检测的改进包络分析法[J].轴承,2006(2):36-39. 被引量:17
  • 4胡红英,马孝江.基于局域波分解的信号降噪算法[J].农业机械学报,2006,37(1):118-120. 被引量:26
  • 5陈予恕.机械故障诊断的非线性动力学原理[J].机械工程学报,2007,43(1):25-34. 被引量:56
  • 6梅宏斌.滚动轴承振动监测与诊断--理论·方法·系统[M].北京:机械工业出版社,1996.
  • 7Ho D, Randall R B. Optimisation of bearing diagnostic techniques using simulated and actual bearing fault signals [ J ]. Mechanical Systems and Signal Processing, 2000, 14 (5) : 763 - 788.
  • 8Nikolaou N G, Antoniadis I A. Demodulation of vibration signals generated by defects in rolling element bearings using complex shifted Morlet wavelet [J]. Mechanical Systems and Signal Processing, 2002,16 (4) : 677 - 694.
  • 9Huang N E, Shen Z, Long S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis [J]. Proc. R. Soc, 1998,454:903 - 905.
  • 10Dwyer R F. Detection of non-Gaussian signals by frequency domain kurtosis estimation[ C ]. International Conference On Acoustics, Speech, and Signal Processing, Boston, 1983, 607 - 610.

共引文献739

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部