摘要
为了实现对低压台区拓扑结构的准确刻画,提出一种基于电压序列最小KL(Kullback-Leibler)散度与深度搜索相结合的拓扑识别方法。首先,采用Neville插值修复电压采样序列,利用改进的KL散度计算用户电压序列概率分布,并依据KL散度大小对用户所属台区进行划分;其次,基于最小KL散度确定深度搜索的索引方向,通过主干搜索与分支搜索遍历台区用户节点,判断用户之间的连接关系;最后,针对不同场景分析所提方案拓扑识别性能。仿真结果验证了所提方案的有效性。
To realize an accurate description of the topology of a low-voltage substation area,a topology identification method based on the combination of minimum Kullback-Leibler(KL)divergence of voltage series and depth search is proposed.Firstly,the Neville interpolation is used to repair the voltage sampling series,and the improved KL divergence is used to calculate the probability distribution of user voltage series.In addition,the user’s substation area is divided according to the magnitude of KL divergence.Secondly,the index direction of depth search is determined based on the minimum KL divergence,and the connection relationship between users is judged by traversing the user nodes in the substation area through the main search and branch search.Finally,the topology identification performance of the proposed scheme is analyzed under different scenarios.Simulation results verify the effectiveness of the proposed scheme.
作者
李开放
林湘宁
李正天
魏繁荣
吴宇奇
武文昊
LI Kaifang;LIN Xiangning;LI Zhengtian;WEI Fanrong;WU Yuqi;WU Wenhao(College of Electrical Engineering and New Energy,China Three Gorges University,Yichang 443002,China;State Key Laboratory of Advanced Electromagnetic Engineering and Technology,Huazhong University of Science and Technology,Wuhan 430074,China)
出处
《电力系统及其自动化学报》
CSCD
北大核心
2024年第10期22-32,共11页
Proceedings of the CSU-EPSA
基金
国家自然科学基金资助重点项目(U22B20106)。