期刊文献+

大数据下高维交互效应的序贯仿真变量识别及应用

Sequential simulation variable identification and application of high-dimensional interaction effects for big data
下载PDF
导出
摘要 随着大数据的到来,因子间的高维交互效应识别成为热门研究问题.为了解决该问题,对高效的Morris理论框架(EMM)进行扩展,提出了一种新的两阶段交互效应筛选方法(IEMM).IEMM充分利用计算机序贯特性,不仅可以高效识别出具有显著的主效应和交互效应和/或非线性效应的因子,而且可以进一步识别出因子间显著的交互效应(TIE).蒙特卡罗仿真结果表明,IEMM方法可以正确识别出EMM无法识别的TIE,并且与传统的识别交互效应的MM方法(IMM)相比,IEMM识别TIE的计算效率更高.实际物流案例表明IEMM识别因子间交互效应可行且稳健,并且能够在不牺牲统计效力的情况下节省计算资源. Since the advent of big data,the identification of high-dimensional interaction effects between factors has become an active research area.To tackle the problem,this paper proposes a new two-stage interaction-based EMM method(IEMM)by extending the efficient Morris method-based framework(EMM).IEMM makes full use of the sequential characteristics of computers.Not only can IEMM efficiently identify factors with significant main effects and interaction and/or non-linear effects,but it can also further discern the significant two-way interaction effects(TIE).Monte Carlo simulation results show that IEMM can correctly identify TIEs that EMM cannot recognize.Compared to the traditional interaction-based MM(IMM),IEM-M has higher computational efficiency in TIE recognition.The real-world logistics case shows that IEMM is feasible and robust to identify TIEs and can achieve computational savings without sacrificing statistical effectiveness.
作者 施文 周晴 Shi Wen;Zhou Qing(School of Business,Central South University,Changsha 410083,China)
机构地区 中南大学商学院
出处 《系统工程学报》 CSCD 北大核心 2024年第5期641-654,766,共15页 Journal of Systems Engineering
基金 国家自然科学基金资助项目(71971219,71991463,72471246) 湖南省杰出青年基金资助项目(2022JJ10084) 湖南省教育厅科学研究重点资助项目(23A0019) 湖南省学位与研究生教学改革研究资助项目(2021JGYB023).
关键词 Morris方法 交互效应 大数据 筛选 仿真实验 Morris method interaction effects big data screening simulation experiments
  • 相关文献

参考文献10

二级参考文献140

  • 1沈艳,陈赟,黄卓.文本大数据分析在经济学和金融学中的应用:一个文献综述[J].经济学(季刊),2019,18(4):1153-1186. 被引量:86
  • 2马若微,唐春阳.考虑误判损失的Logistic违约预测模型构建[J].系统工程理论与实践,2007,27(8):33-38. 被引量:13
  • 3Bettonvil B, Kleijnen J P C. Searching for important factors in simulation models with many factors: Sequential bifurcation[J]. European Journal of Operational Research, 1997, 96(1): 180-194.
  • 4Miller G A. The magical number seven, plus or minus two: Some limits on our capacity for processing information[J]. Psychological Review, 1956, 343-352(2): 81-97.
  • 5Myers R H, Montgomery D C, Anderson-Cook C M. Response surface methodology: Process and product optimization using designed experiments[M]. New York: John Wiley & Sons, 2009.
  • 6Kleijnen J P C, Sanchez S M, Lucas T W, et al. State-of-the-art review: A user's guide to the brave new world of designing simulation experiments[J]. Informs Journal on Computing, 2005, 17(3): 263-289.
  • 7Kleijnen J P C. Factor screening in simulation experiments: Review of sequential bifurcation. Advancing the frontiers of simulation[M]// Alexopoulos C, Goldsman D, Wilson J R. Springer US, 2009: 153-167.
  • 8Kleijnen J P C, Bettonvil B, Persson F. Screening for the important factors in large discrete-event simulation models: Sequential bifurcation and its applications[M]// Dean A, Lewis S. Screening: Springer New York, 2006: 287-307.
  • 9Kleijnen J P C. Design and analysis of simulation experiments[M]. New York: Springer, 2008.
  • 10Cheng R C H. Searching for important factors: Sequential bifurcation under uncertainty[C]// Proceedings of the 29th Conference on Winter simulation, Atlanta, Georgia, United States: IEEE Computer Society, 1997: 275-280.

共引文献804

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部