摘要
为探究电爆等离子体引发合金反应的点火机理,进一步降低爆炸箔发火电压、提高能量利用率,采用电化学方法在铜爆炸箔表面原位可控沉积Ni-Cu预合金薄膜。进行了预合金爆炸箔微观形貌、成分构成和电爆特性等实验研究,结合电爆炸反应过程监测探究了电爆合金化反应路径和释能机理。研究结果表明:采用电化学恒电位方法沉积金属Cu和Ni,当应用电位分别为-0.2 V和-0.8 V,反应时间均为2 700 s时,沉积的Ni-Cu预合金材料呈5μm的立方体结构且分布均匀,无明显氧化物生成。所制备的Ni-Cu预合金爆炸箔在2 000 V充电电压下的能量利用率是Cu爆炸箔的2.11倍,在电爆发生50μs后可观察到明显的合金化反应发生,等离子体膨胀范围和火花持续时间均明显大于Cu爆炸箔,更有利于等离子体直接点火。
In order to explore the ignition mechanism of alloy reactions induced by electric explosion plasma,further reduce the ignition voltage and increase the energy utilization efficiency of the exploding foil(EF),an electrochemical method was proposed in this study to in-situ deposit Ni-Cu pre-alloy films on the surface of Cu EF.The morphology,composition and electric explosion characteristics were investigated systematically,then the alloy reaction path and energy release mechanism were explored combined with electric explosion reaction monitoring.The results show that the electrochemical potentiostatic method can be used to deposit Cu and Ni,the prepared Ni-Cu pre-alloy microcube are evenly distributed with the size of 5μm,when the applied potentials are-0.2 V and-0.8 V,reaction time are both 2700s,respectively and there is no obvious oxide formation.The energy utilization efficiency of prepared Ni-Cu pre-alloy exploding foil under 2000V charging voltage is 2.11 times higher than that of Cu exploding foil,the alloying reaction can be observed clearly after electric explosion occured 50μs later,the plasma expansion range and spark duration time are all significant larger than those of the traditional Cu EF,indicating its excellent electric explosion performance.
作者
申子安
曾鑫
朱艳丽
赵婉君
焦清介
SHEN Zi-an;ZENG Xin;ZHU Yan-li;ZHAO Wan-jun;JIAO Qing-jie(State Key Laboratory of Explosion Science and Safety Protection,School of Mechatronical Engineering,Beijing Institute of Technology,Beijing,100081)
出处
《火工品》
CAS
CSCD
北大核心
2024年第5期28-34,共7页
Initiators & Pyrotechnics
基金
应用物理化学重点实验室开放课题基金(No.6142602220102)。
关键词
预合金爆炸箔
电化学制备
合金化反应
电爆性能
等离子体
Pre-alloy explosion foil
Electrochemical synthesis
Alloy reaction
Electric explosion performance
Plasma