期刊文献+

Enabling built-in electric fields on rhenium-vacancy-rich heterojunction interfaces of transition-metal dichalcogenides for pH-universal efficient hydrogen and electric energy generation

下载PDF
导出
摘要 Most advanced hydrogen evolution reaction(HER)catalysts show high activity under alkaline conditions.However,the performance deteriorates at a natural and acidic pH,which is often problematic in practical applications.Herein,a rhenium(Re)sulfide–transition-metal dichalcogenide heterojunc-tion catalyst with Re-rich vacancies(NiS_(2)-ReS_(2)-V)has been constructed.The optimized catalyst shows extraordinary electrocatalytic HER performance over a wide range of pH,with ultralow overpotentials of 42,85,and 122 mV under alkaline,acidic,and neutral conditions,respectively.Moreover,the two-electrode system with NiS_(2)-ReS_(2)-V1 as the cathode provides a voltage of 1.73 V at 500 mA cm^(-2),superior to industrial systems.Besides,the open-circuit voltage of a single Zn–H_(2)O cell with NiS_(2)-ReS_(2)-V1 as the cathode can reach an impressive 90.9% of the theoretical value,with a maximum power density of up to 31.6 mW cm^(-2).Moreover,it shows remarkable stability,with sustained discharge for approximately 120 h at 10 mA cm^(-2),significantly outperforming commercial Pt/C catalysts under the same conditions in all aspects.A series of systematic characterizations and theoretical calculations demonstrate that Re vacancies on the heterojunction interface would generate a stronger built-in electric field,which profoundly affects surface charge distribution and subsequently enhances HER performance.
出处 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期195-209,共15页 碳能源(英文)
基金 This study was supported by the National Research Foundation of Korea(NRF-2021R1A2C4001777,NRF-2022M3H4A1A04096482 and RS-2023-00229679),the National Natural Science Foundation of China(No.21965005,52363028) the Natural Science Foundation of Guangxi Province(2021GXNSFAA076001) the Guangxi Technology Base and Talent Subject(GUIKE AD20297039).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部