期刊文献+

Leveraging Sharding-Based Hybrid Consensus for Blockchain

下载PDF
导出
摘要 The advent of blockchain technology has transformed traditional methods of information exchange,shifting reliance from centralized data centers to decentralized frameworks.While blockchain’s decentralization and security are strengths,traditional consensus mechanisms like Proof of Work(PoW)and Proof of Stake(PoS)face limitations in scalability.PoW achieves decentralization and security but struggles with scalability as transaction volumes grow,while PoS enhances scalability,but risks centralization due to monopolization by high-stake participants.Sharding,a recent advancement in blockchain technology,addresses scalability by partitioning the network into shards that process transactions independently,thereby improving throughput and reducing latency.However,cross-shard communication,essential for transactions involving multiple shards,introduces challenges in coordination and fault tolerance.This research introduces a shard-based hybrid consensus model,PoSW,which combines PoW and PoS to mitigate the limitations of both mechanisms.By integrating PoW’s fairness with PoS’s scalability in a shard-based blockchain,the proposed model addresses key issues of scalability and monopolization.We evaluate the model against state-of-the-art consensus algorithms,including Monoxide and Practical Byzantine Fault Tolerance(PBFT).The results show that the proposed PoSW model reduces communication overhead compared to PBFT and improves resource utilization over Monoxide.In addition to performance gains,the security analysis demonstrates that the PoSW model provides robust defense against common blockchain attacks such as the 51%and Sybil attacks,etc.The proposed approach is particularly suited for applications like decentralized finance(DeFi)and supply chain management,which require both high scalability and robust security.The contributions of this research include the development of the PoSW hybrid consensus mechanism,its comparative evaluation with leading algorithms,and a thorough security analysis.These contributions represent a significant step forward in addressing blockchain’s scalability,fairness,and security challenges.
出处 《Computers, Materials & Continua》 SCIE EI 2024年第10期1215-1233,共19页 计算机、材料和连续体(英文)
  • 相关文献

参考文献1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部