摘要
本文基于Brunn-Minkowski理论中宽度积分的研究,定义了Orlicz-log宽度积分,建立Orlicz-log宽度积分的Orlicz-Minkowski型不等式和Orlicz-Brunn-Minowski型不等式及它们间的等价关系。当φ(x,y)=x^(-p)+y^(-p)时,即为L_(p)-log宽度积分的Lp-Minkowski型不等式和L_(p)-Brunn-Minowski型不等式。
Based on the study of width integral in Brunn-Minkowski theory,we define the Orlicz-log width integral and establish the Orlicz-Minowski type inequality and the Orlicz-Brunn-Minkowski type inequality of the Orlicz-log width integral as well as their equivalence relationship.Whenφ(x,y)=x^(-p)+y^(-p)is satisfied,the inequalities of Orlicz-log width integral is correspondingly transformed to L_(p)-Minowski type inequality and L_(p)-Brunn-Minkowski type inequality of L_(p)-log width integral.
作者
杨林
罗淼
Yang Lin;Luo Miao(School of Information Technology,Tongren Polytechnic College,554300,Tongren,Guizhou,China;School of Mathematics Science,Guizhou Normal University,550025,Guiyang,China)
出处
《山东师范大学学报(自然科学版)》
2024年第3期243-249,共7页
Journal of Shandong Normal University(Natural Science Edition)