摘要
随着无线通信和物联网(Internet of Things,IoT)设备的迅速增长,频谱资源短缺和电磁环境复杂性成为通信系统面临的挑战。频谱感知作为频谱管理的一项关键技术,使频谱资源短缺问题得到了缓解。卷积神经网络(Convolutional Neural Network,CNN)作为深度学习的代表,近年来在频谱感知任务中表现出色。为解决CNN实现频谱感知任务时感受野受限、多尺度信息融合和空间信息捕获等方面存在局限性的问题,提出了一种注意力多尺度特征融合CNN(Attention-Multi-Scale Feature Extraction-CNN,AMFE-CNN)模型,包含多尺度特征提取和注意力模块。多尺度特征提取利用膨胀卷积获取更大的时频感受野,注意力模块通过多重卷积和池化操作关注时频图的空间信息。实验结果表明,该模型在频谱感知任务中表现出色,提高了检测性能和泛化能力。
With the rapid growth of wireless communication and Internet of Things(IoT)devices,the scarcity of spectrum resources and the complexity of electromagnetic environments have emerged as significant challenges for communication systems.Spectrum sensing,as a key technology in the spectrum management,has alleviated the issue of spectrum resource scarcity.As a representative of deep learning,Convolutional Neural Network(CNN)have demonstrated remarkable performance in spectrum sensing tasks in recent years.To address limitations such as restricted receptive fields,multi-scale information fusion and spatial information capture in CNN-based spectrum sensing tasks,an Attention-Multi-Scale Feature Extraction-CNN(AMFE-CNN)model is proposed,which includes multi-scale feature extraction and attention modules.The multi-scale feature extraction utilizes dilated convolutions to capture a larger time-frequency receptive field,while the attention module focuses on spatial information in the time-frequency map through multiple convolution and pooling operations.Experimental results show that the proposed model performs excellently in spectrum sensing tasks,improving both detection performance and generalization capabilities.
作者
王琳
张世龙
王树彬
WANG Lin;ZHANG Shilong;WANG Shubin(Radio Monitoring Station in Inner Mongolia Autonomous Region,Hohhot 010011,China;College of Computer Science,Inner Mongolia University,Hohhot 010021,China;College of Electronic Information Engineering,Inner Mongolia University,Hohhot 010021,China)
出处
《无线电工程》
2024年第11期2520-2526,共7页
Radio Engineering
基金
国家自然科学基金(62361048)。