期刊文献+

乳腺癌超声影像组学的研究进展

Research progress of ultrasound radiomics in breast cancer
下载PDF
导出
摘要 乳腺癌的诊断方法包括乳房X射线摄影、超声、磁共振成像和活检技术,但每种方法都存在一定的局限性。超声影像组学是一个新兴领域,通过提取和分析超声图像中的定量特征,有助于提高乳腺癌的诊断和预后评估准确性。这项技术已应用于乳腺癌领域,可以提高其诊断准确性、帮助建立预后模型、预测腋窝淋巴结转移、监测治疗反应并指导个性化治疗。未来的研究方向可能包括整合多模态数据、定制诊断和治疗策略、优化机器学习和人工智能算法、建立标准化方法并进行临床验证及监测治疗效果等,但也需要解决一系列挑战,如建立标准化方法、提高图像质量、保护数据安全和患者隐私、验证特征的可靠性和实用性。解决这些问题将有助于在乳腺癌领域中更广泛地应用超声影像组学技术,从而提高患者的治疗效果和生存率。 Diagnostic methods for breast cancer include the mammography,ultrasound,magnetic resonance imaging and biopsy technique,but each method has a certain limitation.The ultrasound radiomics is a newly developing field,which extracts and analyzes the quantitative features in ultrasound images and is helpful to improve the accuracy of diagnosis and prognosis assessment of related diseases.This technique has been used in the field of breast cancer,can enhance the diagnostic accuracy,help to construct the prognostic model,predict the axillary lymph node metastasis,monitor the treatment response and guide the personalized treatment.The future research directions may include integrating multimodal data,customizing diagnostic and treatment strategies,optimizing machine learning and artificial intelligence algorithms,establishing the standardized methods,conducting the clinical validation and monitoring the treatment effects.However,there are several challenges that need to be addressed,such as establishing the standardized methods,improving the image quality,ensuring the data security and privacy,and verifying the reliability and practicality of features in order to widely apply the ultrasound radiomics technology in breast cancer field,thus improve the treatment effect and survival rate of the patients.
作者 鲜锋 周畅 韦力 XIAN Feng;ZHOU Chang;WEI Li(Department of Ultrasonic Imaging,First College of Clinical Medical Science,China Three Gorges University,Yichang,Hubei 443003,China)
出处 《重庆医学》 CAS 2024年第20期3179-3183,共5页 Chongqing Medical Journal
基金 中华国际医学交流基金项目(Z2014072101)。
关键词 超声 影像组学 乳腺癌 机器学习 深度学习 人工智能 综述 ultrasound radiomics breast cancer machine learning deep learning artificial intelligence review
  • 相关文献

参考文献5

二级参考文献42

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部