期刊文献+

MDF-Net:一种多尺度细节特征融合的视网膜血管分割算法

MDF-Net:a multi-scale detail feature fusion algorithm for retinal vessel segmentation
下载PDF
导出
摘要 视网膜血管密集且不规则分布,许多毛细血管融入背景,对比度较低,导致视网膜血管分割非常复杂。基于编码器-解码器的视网膜血管分割网络由于多次编码和解码,会导致细节特征的不可逆损失,进而导致血管分割错误。针对这些问题,提出一种用于视网膜血管分割的多尺度细节特征融合网络(multi-scale detail feature fusion network,MDF-Net)。为了确保在精细血管分割过程中有效提取复杂特征,构建细节增强编码器(detail-enhanced encoder,DEE)模块以增强细节表示能力;引入动态解码器(dynamic decoder,DYD)模块,在解码过程中保留空间信息,减少上采样操作引起的信息损失;采用多尺度特征融合(multi-scale feature fusion,MFF)模块来融合编码和解码过程中的特征图,以实现多尺度上下文信息的有效聚合。将MDF-Net算法与其他9种算法在DRIVE、CHASEDB1、STARE数据集上进行对比实验。实验结果表明:MDF-Net算法在DRIVE、CHASEDB1和STARE数据集上的灵敏度(sensitivity,Sen)值分别为0.8250、0.8809和0.8634,曲线下面积(area under the curve,AUC)值分别为0.9885、0.9908和0.9909,MDF-Net在视网膜血管分割方面表现出卓越的性能。 The segmentation of retinal vessels is highly challenging because retinal vessels are densely and irregularly distributed with many capillaries blending into the background,exhibiting low contrast.Moreover,the encoder-decoder-based network for retinal vessel segmentation suffers from irreversible loss of detailed features due to multiple encoding and decoding operations,leading to incorrect vessel segmentation.To solve these issues,we propose a multi-scale detail feature fusion network(MDF-Net)for retinal vessel segmentation.This network incorporates a detail-enhanced encoder(DEE)module to enhance the representation of intricate details,ensuring effective retention of complex features during the segmentation of fine vessels.The dynamic decoder(DYD)module is introduced to preserve spatial information during the decoding process and minimize the information loss caused by upsampling operations.The multi-scale feature fusion(MFF)module fuses feature maps from both encoding and decoding and achieves effective aggregation of multi-scale contextual information.The experiments on the DRIVE,CHASEDB1,and STARE datasets reveal that MDF-Net achieves sensitivity(Sen)values of 0.8250,0.8809,and 0.8634,as well as area under the curve(AUC)values of 0.9885,0.9908,and 0.9909,respectively.These results demonstrate that MDF-Net significantly outperforms existing algorithms in retinal vessel segmentation.
作者 蔡鹏飞 李碧原 孙高伟 李士心 CAI Pengfei;LI Biyuan;SUN Gaowei;LI Shixin(School of Electronic Engineering,Tianjin University of Technology and Education,Tianjin 300222,China)
出处 《天津职业技术师范大学学报》 2024年第3期64-72,共9页 Journal of Tianjin University of Technology and Education
基金 天津市自然科学基金资助项目(2021FQ-0027) 天津市教委科研计划项目(2020KJ124) 天津职业技术师范大学科研启动项目(41401-KRKC012007).
关键词 视网膜血管分割 U-Net 细节增强 动态上采样 多尺度特征融合 retinal vessel segmentation U-Net detail enhancement dynamic upsampling multi-scale feature fusion
  • 相关文献

参考文献2

二级参考文献9

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部