期刊文献+

黏弹介质时空域高斯波包偏移

Time-space Gaussian packets migration in viscoelastic media
下载PDF
导出
摘要 基于Katchalov提出的矢量时空域高斯束表达式,构建弹性波介质中的矢量时空域格林函数;使用Kirchhoff-Helmholtz积分解得到检波点矢量波场,并利用散度、旋度算子在矢量波场中分离出纯纵波和纯横波分量;基于衰减补偿原理,对波场进行衰减补偿,最后使用震源归一化成像条件得到PP、PS成像结果。数值实验证明了所提方法的正确性和适应性。结果表明,所提方法相比于传统的高斯束方法,成像精度近似,计算效率方面有较大优势。 Based on the vector time-space domain Gaussian beam expression proposed by Katchalov,the vector time-space domain Green s function in elastic wave media is constructed.The Kirchhoff-Helmholtz integral is applied to obtain the vector wave field of the receiver point,and the divergence and curl operators are used to separate the pure P-wave and pure S-wave components from the vector wave field.Based on the attenuation compensation principle,the wave field is adjusted and the final PP and PS imaging results are achieved using source-normalized imaging conditions.Numerical experiments confirm the correctness and adaptability of the proposed method.Compared with the traditional Gaussian beam method,the approach maintains similar imaging accuracy while offering significant improvements in computational efficiency.
作者 陈超 李振春 黄建平 CHEN Chao;LI Zhenchun;HUANG Jianping(School of Geosciences in China University of Petroleum(East China),Qingdao 266580,China;State Key Laboratory of Deep Oil and Gas,China University of Petroleum(East China),Qingdao 266580,China)
出处 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第5期46-58,共13页 Journal of China University of Petroleum(Edition of Natural Science)
基金 国家自然科学基金项目(42074133) 中石油重大科技合作项目(ZD2019-183-003)。
关键词 高斯束 时空域高斯波包 多分量 黏弹介质 Gaussian beam time-space Gaussian packets multi-component viscoelastic media
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部