期刊文献+

PEMFC热管理系统的改进偏差型自抗扰控制

IMPROVED ERROR-BASED ACTIVE DISTURBANCE REJECTION CONTROL FOR THERMAL MANAGEMENT SYSTEM OF PEMFC
下载PDF
导出
摘要 该文建立带有循环水泵和散热器的电堆热管理系统动态数学模型,采用冷却水流量跟随电流、风扇控制电堆温度的前馈-反馈复合控制策略。通过提取部分确定性模型信息对一阶偏差型自抗扰控制算法进行改进,以提高热管理系统的温度控制品质。仿真实验结果表明:所提出的改进ADRC控制算法可有效解决PEMFC热管理系统中存在的强耦合、多扰动的控制难题,相较于传统的PI控制算法,闭环控制系统的主要单项性能指标,即超调量下降了43.7%,调节时间缩短了20.2%,总体体现了系统良好的抗干扰性能和鲁棒性能,能达到预期控制效果。 This study introduces a dynamic mathematical model for the thermal management system of the stack,incorporating a circulating water pump and radiator.The control strategy integrates feedforward and feedback mechanisms,focusing on regulating cooling water flow based on current and utilizing a fan to control stack temperature.An innovative approach is applied to enhance the first-order deviation active disturbance rejection control algorithm.This involves extracting deterministic model information to elevate the temperature control precision within the thermal management system.Simulation results demonstrate that the effectiveness of the proposed improved ADRC control algorithm in addressing challenges related to strong coupling and multiple disturbances inherent in PEMFC thermal management systems.Comparative analysis against a conventional proportional-integral control algorithm reveals significant improvements in the closed-loop control system.Specifically,the enhanced ADRC algorithm achieves a 43.7%reduction in overshoot and a 20.2%decrease in adjustment time.These results underscore the system's robustness and anti-interference capabilities,affirming its ability to attain the desired control outcomes.
作者 孙明 邹浓茂 白阳振 徐文鑫 Sun Ming;Zou Nongmao;Bai Yangzhen;Xu Wenxin(Hebei Technology Innovation Center of Simulation&Optimized Control for Power Generation(North China Electric Power University),Baoding 071003,China;China United Engineering Corporation.Co.,Ltd.,Hangzhou 310052,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2024年第10期68-76,共9页 Acta Energiae Solaris Sinica
基金 河北省省级科技计划(22567643H) 河北省自然科学基金(E2018502111)。
关键词 质子交换膜燃料电池 热管理 模型 自抗扰控制 温度控制 proton exchange membrane fuel cell thermal management models active disturbance rejection control temperature control
  • 相关文献

参考文献8

二级参考文献55

  • 1何广利,丁信伟,由宏新,Abuliti Abudula.常规流场下各向异性扩散层对质子交换膜燃料电池(PEMFC)性能影响[J].高校化学工程学报,2005,19(6):818-823. 被引量:3
  • 2KIRUBAKARAN A, JAIN S, NEMA R K. A review on fuel cell technologies and power electronic interface[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2430 - 2440.
  • 3YU S, JUNG D. Thermal management strategy for a proton exchange membrane fuel cell system with a large active cell area[J]. Renewable Energy, 2008, 33(12): 2540 - 2548.
  • 4SCHUMACHER J O, GEMMAR P, DENNE M, et al. Control of miniature proton exchange membrane fuel cells based on fuzzy logic[J], Journal of Power Sources, 2004, 129(2): 143 - 151.
  • 5ZHANG H G, LIU D R. Fuzzy modeling and fuzzy control[M] //Control Engineering. Boston, American: Birkhauser, 2006.
  • 6YU X C, ZHOU B, SOBIESIAK A. Water and thermal management for Ballard PEM fuel cell stack[J]. Journal of Power Sources, 2005, 147(1/2): 184- 195.
  • 7ARS1E I, DI DOMENICO A, PIANESE C. Modeling and analysis of transient behavior of polymer electrolyte membrane fuel cell hybrid vehicles[J]. Journal of Fuel Cell Science and Technology, 2007, 4(3): 261 - 271.
  • 8SLADE S M, RALPH T R, LEoN C P, et al. The ionic conductivity of a nation 1100 series of proton-exchange membranes re-cast from Butan-l-ol and Propan-2-ol[J]. Fuel Cells, 2010, 10(4): 567 -574.
  • 9PUKRUSHPAN J T. Modeling and control of fuel cell systems and fuel processors[D]. Michigan: University of Michigan, 2003.
  • 10HEINZEL A, ROES J, BRANDT H. Increasing the electric efficiency of a fuel cell system by recirculating the anodic offgas[J]. Journal of Power Sources, 2005,145(2): 312- 318.

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部