期刊文献+

基于CNN和BiLSTM神经网络模型的太阳能供暖负荷预测研究

RESEARCH ON SOLAR HEATING LOAD FORECASTING BASED ON CNN AND BILSTM NEURAL NETWORK MODEL
下载PDF
导出
摘要 针对太阳能供暖系统中因热量供需不匹配而引起的能源浪费现象,提出一种基于卷积神经网络-双向长短期记忆神经网络的短期热负荷预测模型。首先对数据进行清洗,使数据准确完整;其次依据皮尔逊相关系数对输入特征进行筛选;最后依据其空间-时间特征建立卷积神经网络-双向长短期记忆神经网络模型。在与单一神经网络模型长短期记忆神经网络及双向长短期记忆神经网络进行详细比较和分析后,结果表明,该模型相较于传统神经网络模型在精确度上存在明显提升,验证了本模型在太阳能供暖负荷预测中的有效性。 Aiming at the phenomenon of energy waste caused by the mismatch between heat supply and demand in solar heating system,a short-term heat load forecasting model based on convolutional neural network-bidirectional long short-term memory neural network is proposed.Firstly,the data is cleaned to make the data accurate and complete.Secondly,the input features are screened according to the Pearson correlation coefficient.Finally,a convolutional neural network-bidirectional long-term and short-term memory neural network model is established based on its spatial-temporal characteristics.After detailed comparison and analysis with the single neural network model,the length of the memory neural network and the two-way long short-term memory neural network,the results show that the model has a significant improvement in accuracy compared with the traditional neural network model,which verifies the effectiveness of the model in the prediction of solar heating load.
作者 周泽楷 侯宏娟 孙莉 靳涛 Zhou Zekai;Hou Hongjuan;Sun Li;Jin Tao(State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,North China Electric Power University,Beijing 102206,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2024年第10期415-422,共8页 Acta Energiae Solaris Sinica
基金 国家重点研发计划(2021YFE0194500) 北京市自然科学基金(3222042) 国家自然科学基金重大项目(52090064)。
关键词 太阳能供暖 卷积神经网络 长短期记忆网络 热负荷 神经网络模型 solar heating convolutional neural network(CNN) long short-term memory(LSTM) thermal load neural network model
  • 相关文献

参考文献5

二级参考文献55

共引文献207

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部