期刊文献+

基于迁移学习的风电机组叶片损伤检测与分析

WIND TURBINE BLADE DAMAGE DETECTION AND ANALYSIS BASED ON TRANSFER LEARNING
下载PDF
导出
摘要 针对风电机组叶片损伤成因复杂、故障识别效率低、精度不足等问题,提出一种基于迁移学习改进的DenseNet网络(DenseNet-TL)的风电机组叶片损伤检测方法。建立DenseNet-TL数学模型,提升特征提取能力,在该模型下对风电机组叶片图像进行识别分析,以确定叶片的损伤状态。以某风场数据集进行离线训练和测试,结果表明:与AlexNet、ResNet模型进行对比,该模型可有效节省训练时间、提高模型的泛化能力,训练准确度平均值达到90%以上,验证了该方法的有效性和精确性。 Aiming at the problems of complex causes of wind turbine blade damage,low fault identification efficiency,and insufficient accuracy,a wind turbine blade damage detection method is propsed based on improved DenseNet network improved by transfer learning is proposed.A mathematical model of DenseNet network improved by transfer learning(DenseNet-TL)is established to improve the feature extraction capability,and the recognition and analysis of wind turbine blade images are carried out under the model to determine the damage state of the blades.The offline training and testing is carried out with a wind farm dataset,and the results show that,compared with AlexNet and ResNet models,the model effectively saves the training time,improves the generalization ability of the model,and the average training accuracy reaches more than 90%,which verifies the validity and accuracy of the method.
作者 殷孝雎 潘雪 左雁斌 关新 Yin Xiaoju;Pan Xue;Zuo Yanbin;Guan Xin(School of Renewable Energy,Shenyang Institute of Engineering,Shenyang 110136,China;Huaneng Liaoning Clean Energy Co.,Ltd.,Shenyang 110180,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2024年第10期506-511,共6页 Acta Energiae Solaris Sinica
基金 辽宁省科技厅重点项目(LJKZ1088) 2021年辽宁省教育厅科研项目(XNLG2130) 辽宁省自然基金资助计划项目(BL2204)。
关键词 迁移学习 图像识别 损伤检测 风电机组叶片 风电机组 transfer learning image recognition damage detection wind turbine blades wind turbines
  • 相关文献

参考文献14

二级参考文献164

  • 1肖劲松,严天鹏.风力机叶片的红外热成像无损检测的数值研究[J].北京工业大学学报,2006,32(1):48-52. 被引量:36
  • 2李俊峰.中国风电发展报告2011[M].北京:中国环境科学出版社,2011.
  • 3JASINIEN E,RAIUTIS R,LITERIS R et al.Ultrasonic NDT of wind turbine blades using contact pulseecho immersion testing with moving water container[J].Ultragarsas,2008,63(3):28-32.
  • 4RAIUTIS R,JASINIENE,UKAUSKAS E.Ultrasonic NDT of wind turbine blades using guided waves[J].Ultragarsas,2008 ,63(1):7-11.
  • 5RIPPERT L,M WEVERS M,HUFFEL V S.Optical and acoustic damage detection in laminated CFRP composite materials[J].Composites Science and Technology,2000,60:2713-2724.
  • 6OMAR M A.A quantitative review of three flash thermography processing routines[J].Infrared Physics and Technology,2008,51:300-306.
  • 7张天鹏.红外热成像技术在风力机叶片无损检测方面的应用研究[D].北京:北京工业大学,2004.
  • 8DATTOMA V,MARCUCCIO R,PAPPALTTERE C,et al.Thermographic investigation of sandwich structure made of composite material[J].NDT&E International,2001,34(8):515-520.
  • 9杨建良,向清,郭照华,黄德修.探测复合材料结构冲击损伤的内埋光纤阵列[J].光纤与电缆及其应用技术,1997(4):27-29. 被引量:1
  • 10江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359. 被引量:446

共引文献2098

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部