摘要
针对有监督行人重识别算法泛化能力较差的问题,提出一种基于多维度注意力机制的行人重识别算法。该算法引入了一个多维度注意力模块,通过学习行人图像在多个维度上的特征信息,提高行人图像泛化能力。此外,还提出了一个优化损失模块,加速身份损失的收敛,从而提高模型的训练速度。通过将这2个模块结合起来,本文算法在公开数据集Market—1501和DukeMTMC⁃ReID上进行了大量实验。实验结果表明:所提出的算法能够有效地解决有监督行人重识别算法泛化能力较差的问题。
Aiming at the problema of poor generalization capability of supervised pedestrain re⁃identification algorithms,a pedestrain re⁃identification algorithm based on multi⁃dimensional attention mechanism is proposed.A multi⁃dimensional attention module is introduced to improve the generalization ability of pedestrain images by learning feature information for pedestrain images in multiple dimensions.Additionally,an optimized loss module is proposed to accelerate the convergence of identity loss and improve the training speed of the model.By combining the two modules,the proposed algorithm is extensively tested on the public datasets,Market—1501 and DukeMTMC⁃ReID.The experimental results demonstrate that the proposed algorithm can effectively solve the problem of poor generalization capability of supervised pedestrain of re⁃identification.
作者
白洋洋
徐焕宇
张福龙
戴昕宇
丁天
BAI Yangyang;XU Huanyu;ZHANG Fulong;DAI Xinyu;DING Tian(School of Automation,Nanjing University of Information Science&Technology,Nanjing 210044,China;School of Internet of Things Engineering,Wuxi University,Wuxi 214063,China)
出处
《传感器与微系统》
CSCD
北大核心
2024年第11期10-12,16,共4页
Transducer and Microsystem Technologies
基金
国家自然科学基金资助项目(11704377)
江苏省高校哲学社会科学研究项目(2022SJYB0986,2022SJYB0987,2022SJYB0982)
无锡学院2021年教学改革研究项目(JGYB202107)。
关键词
行人重识别
多维度注意力
优化损失
pedestrain re⁃identification
multi⁃dimensional attention
optimization loss