期刊文献+

基于模糊聚类的超像素图像分割算法

Superpixel Image Segmentation Based on Fuzzy Clustering
下载PDF
导出
摘要 针对传统的模糊聚类算法在图像分割时出现的信息保留不足和抗噪性差等问题,提出一种基于模糊聚类的超像素图像分割算法。该算法首先在全局范围利用抑制式模糊c均值聚类算法确定像素的所属分类,然后在局部范围利用简单线性迭代聚类算法融合图像中物体的边界信息,最后通过计算超像素分割网格划分下的均值隶属度完成图像分割。算法既保留模糊聚类的粗模块分割优势,又利用超像素提高对边界信息的融合能力,达到优化分割效果的目的。在数值实验部分,分别在人工合成图像和Berkeley数据集等真实图像上检测算法效果,验证了边界分割能力和抗图像噪点能力。 Aiming at the problems of insufficient information retention and poor anti-noise properties of traditional fuzzy clustering algorithms in image segmentation,this paper proposes a super-pixel image segmentation based on fuzzy clustering.The segmentation method first uses the Suppressed Fuzzy C-Means clustering algorithm to determine the classification of pixels in the global range.The boundary information of the object in the image is then fused at the local scale by using the Simple Linear Iterative Clustering.Finally,the image segmentation is completed by calculating the mean degree of affiliation under the superpixel segmentation grid division.This method not only retains the advantages of fuzzy clustering in coarse module segmentation,but also uses superpixel algorithm to improve the fusion ability of boundary information,so as to achieve the purpose of optimizing the segmentation effect.In the numerical experiment section,the effect of the algorithm is tested on synthetic images and the Berkeley data set respectively,and the property of boundary segmentation and anti-image noise is verified.
作者 泰月 许龙强 TAI Yue;XU Longqiang(School of Mathematics and Statistics,Changchun University of Science and Technology,Changchun 130022)
出处 《长春理工大学学报(自然科学版)》 2024年第5期119-125,共7页 Journal of Changchun University of Science and Technology(Natural Science Edition)
基金 吉林省教育厅科学研究项目(JJKH20240892KJ)。
关键词 图像分割 模糊C均值聚类 简单线性迭代聚类 超像素分割 image segmentation the suppressed fuzzy C-Means the simple linear iterative clustering super pixel segmentation
  • 相关文献

参考文献6

二级参考文献37

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部