期刊文献+

基于ARIMA与LSTM的铁路车站客流预测方法比较

Comparison of railway passenger flow forecast methods based on ARIMA and LSTM
下载PDF
导出
摘要 精准的客流预测是车站客运组织优化的基础,是提高运营安全和运输效率的有效途径。以江门东站全年进站客流数据为研究对象,分别构建ARIMA时间序列模型与LSTM神经网络模型,从预测精度、计算速度、误差指标评价、模型适应性等方面分析比较两种预测模型对客流预测结果的差异性。结果表明,LSTM模型预测精度和拟合精确度更优,ARIMA模型计算速度更快。研究结果对客流预测方法选择有借鉴意义。 Accurate passenger flow forcast is the basis of the optimization of passenger transportation organization and an effective way to improve operational safety and transportation efficiency.Taking the annual passenger flow data of Jiangmen East Railway Station as research object,and the ARIMA time series model and the LSTM neural network model were constructed respectively.From the perspectives of forecast accuracy,calculation speed,error index evaluation,and model adaptability,the differences in passenger flow forecast results of two forecast models were analyzed.The results show that the LSTM model has better forecast accuracy and fitting accuracy,and the ARIMA model has faster calculation speed.This study result can provide significant practical implications for the selection of passenger flow forecast methods.
作者 余彦翘 李思杰 刘志钢 YU Yanqiao;LI Sijie;LIU Zhigang(School of Urban Railway Transportation,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《上海工程技术大学学报》 CAS 2024年第3期278-283,共6页 Journal of Shanghai University of Engineering Science
关键词 铁路车站 ARIMA模型 LSTM模型 客流预测 比较分析 railway station ARIMA model LSTM model passenger flow forecast comparative analysis
  • 相关文献

参考文献6

二级参考文献34

共引文献448

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部