期刊文献+

基于大数据的高校人力资源优化配置探究

Research on the optimal allocation of university human resources based on big data
下载PDF
导出
摘要 高校人力资源优化配置是高校管理的重要内容,关系到高校的发展和竞争力。大数据技术既为高校人力资源优化配置提供了新的工具和机遇,也带来了新的挑战和问题。文章从技术、组织和环境三个方面,分析了大数据技术在高校人力资源优化配置中的可行性、必要性和挑战,并以招聘与选拔、员工培训与发展、人力资源配置为例,论述了大数据技术在高校人力资源优化配置中的具体应用和效果。同时还探讨了大数据技术在高校人力资源优化配置中面临的数据安全和隐私保护、技术应用的适应性和培训、大数据平台的建设和维护等问题,并提出了相应的优化策略和建议。文章认为,高校应充分利用大数据技术的优势,克服其挑战,实现人力资源的优化配置,提升高校的管理水平和核心竞争力。 The optimal allocation of human resources in universities is an important part of university management,which is related to the development and competitiveness.Big data technology provides new tools and opportunities for the optimal allocation of human resources in colleges and universities,but also brings new challenges and problems.In this paper,from three aspects of technology,organization and environment,analyzes the feasibility of big data technology in the optimal allocation of human resources,necessity and challenge,and in recruitment and selection,staff training and development,human resource allocation,for example,discusses the specific application of large data technology in human resource allocation and effect.It also discusses the big data technology in the optimal allocation of human resources in universities Temporary data security and privacy protection,the adaptability and training of technology application,the construction and maintenance of big data platform,and put forward the corresponding optimization strategies and suggestions.This paper holds that universities should make full use of the advantages of big data technology,overcome its challenges,realize the optimal allocation of human resources,and improve the management level and core competitiveness of universities.
作者 李圆珊 Li Yuanshan(Yunnan Vocational College of Science and Technology,Kunming,Yunnan,650000)
出处 《市场周刊》 2024年第30期163-166,共4页 Market Weekly
关键词 大数据 高校 人力资源 优化配置 big data university human resources optimal allocation
  • 相关文献

参考文献5

二级参考文献12

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部