期刊文献+

Pathological basal ganglia oscillations with time delays:a memoryless feedback control strategy

原文传递
导出
摘要 Pathological basal ganglia oscillations are associated with the hypokinetic motor symptoms of Parkinson’s disease.In this paper,a memoryless feedback control strategy is proposed to suppress pathological oscillations in the basal ganglia.In the most of closed-loop control strategies,the excitatory subthalamic nucleus populations are both monitored and stimulated targets,neglecting the important contribution of the external globus pallidus populations in suppressing pathological oscillations.To this end,we transform the original model into a time-delay system with a lower-triangular structure,and construct a memoryless state feedback controller utilizing the gain scaling method.It is proved by the Lyapunov–Krasovskii functional method that all the signals of the resulting closed-loop system are bounded,and the system states converge to an adjustable region of the origin.In addition,the input delay in stimulating the target is considered and a corresponding controller is designed to achieve convergence of the states in the resulting closed-loop system with both state delays and input delay.Moreover,simulation tests are conducted to explore the performance of the control strategy.This paper further explores the intrinsic dynamics in the neural system,and provides an effective strategy for closed-loop deep brain stimulation control.
出处 《Control Theory and Technology》 EI CSCD 2024年第4期568-580,共13页 控制理论与技术(英文版)
基金 supported by the Major Fundamental Research Program of the Natural Science Foundation of Shandong Province,China(No.ZR2020ZD25) the Autonomous Innovation Team Foundation for“20 Items of the New University”of Jinan City(No.202228087).
  • 相关文献

参考文献2

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部