摘要
目的拟合最优预测模型,探讨乌鲁木齐市可吸入颗粒物(inhalable particles,PM_(10))污染时间分布特征及趋势变化,为推进大气治理提供参考依据。方法以2016—2022年乌鲁木齐市颗粒物PM_(10)监测资料为基础,构建颗粒物PM_(10)月均浓度数据库,应用自回归集成移动平均模型(autoregressive integrated moving average model,ARIMA)分别拟合颗粒物PM_(10)预测模型及对其分布特征进行分析,并预测2023—2024年颗粒物PM_(10)浓度趋势变化。结果2016—2022年乌鲁木齐市颗粒物PM_(10)月均浓度数值比较,差异有统计学意义(P<0.01);最优模型为ARIMA(0,0,1)(1,1,0)_(12);月均浓度值逐年减小,每年的1、2、12月浓度值达到最大;经预测,2023—2024年乌鲁木齐市颗粒物PM_(10)月均浓度变化趋势与2016—2022年一致。结论最优模型为ARIMA(0,0,1)(1,1,0)_(12);乌鲁木齐市颗粒物PM_(10)月均浓度每年呈现秋冬季节高,呈逐年降低的趋势变化,该模型可对乌鲁木齐市颗粒物PM_(10)月均浓度进行有效的短期预测分析。
Objective To fit the optimal prediction model and explore the temporal distribution characteristics and trend changes of inhalable particles(PM_(10))pollution in Urumqi City,providing reference for promoting atmospheric governance.Methods Based on the monitoring data of PM_(10)in Urumqi City from 2016 to 2022,the database of PM_(10)monthly average concentration was constructed,and the autoregressive integrated moving average model(ARIMA)was used to fit the prediction model of PM_(10)and analyze its distribution characteristics,and forecast the trend change of PM_(10)concentration from 2023 to 2024.Results There was a statistically significant difference in the monthly average concentration of PM_(10)in Urumqi City from 2016 to 2022(P<0.01),and the optimal model was ARIMA(0.0,1)(1,1,0)_(12).The monthly average concentration values of PM_(10)in Urumqi City had been decreasing year by year,reaching their maximum values in January,February and December.According to the prediction,the monthly average concentration of particulate matter PM_(10)in Urumqi City from 2023 to 2024 was consistent with that from 2016 to 2022.Conclusion The optimal model is ARIMA(0,0,1)(1,1,0)_(12).The monthly average concentration of PM_(10)in Urumqi City shows a trend of increasing in autumn and winter,and decreasing year by year.This model can effectively predict and analyze the monthly average concentration of PM_(10)in Urumqi City in the short term.
作者
陈佩弟
周明璋
肖婷婷
郑帅印
刘晓航
CHEN Peidi;ZHOU Mingzhang;XIAO Tingting;ZHENG ShuaiYin;LIU Xiaohang(School of Public Health,Xinjiang Second Medical College,Karamay,Xinjiang 834000,China;College of Pharmacy,Xinjiang Second Medical College,Karamay,Xinjiang 834000,China;Graduate School,Xinjiang Medical University,Urumqi,Xinjiang 830000,China)
出处
《职业与健康》
CAS
2024年第15期2086-2090,共5页
Occupation and Health
基金
2022年新疆维吾尔自治区区级大学生创新创业训练计划项目(S202213560013)
新疆维吾尔自治区高校科研计划项目(XJEDU2022P147)
新疆第二医学院青年科学基金项目(QK202211)。
关键词
大气颗粒物
时间序列分析
预测
Atmospheric particulate matter
Time series analysis
Prediction