期刊文献+

FeC合金拉伸行为的分子动力学模拟研究

Molecular dynamics simulation study on the tensile behavior of FeC alloy
原文传递
导出
摘要 为了探究温度和应变率对FeC合金微观力学性能的影响,运用分子动力学方法对FeC合金进行了拉伸性能的模拟,得到了不同温度、不同应变率工况下FeC合金的应力应变曲线,并对其进行了分析,利用MATLAB对数据进行处理,建立了关于温度和应变率的FeC合金弹性模量和屈服强度的数学预测模型。结果表明:弹性模量和屈服强度的仿真值与数学模型的预测值之间的绝对误差最大分别为2.680 GPa和0.079 GPa,相对误差最大分别为1.680%和0.737%,数学预测模型能在一定程度上对弹性模量和屈服强度进行有效的预测。 In order to investigate the effects of temperature and strain rate on the micro-mechanical properties of FeC alloys,molecular dynamics methods were used to simulate the tensile properties of FeC alloys.The stress-strain curves of FeC alloys at different temperatures and strain rates were obtained and analyzed,and the data was processed using MATLAB.A mathematical model was established to predict the elastic modulus and yield strength of FeC alloys calculated on the basis of temperature and strain rate.The results show that the maximum absolute errors between the simulation and the prediction values by the mathematical model of elastic modulus and yield strength are 2.680 GPa and0.079 GPa,respectively.The maximum relative errors are 1.680%and 0.737%,respectively.The mathematical prediction model can effectively predict the elastic modulus and yield strength to a certain extent.
作者 李佳君 孙淼 吴慧娟 吕世宁 高有山 王爱红 Li Jiajun;Sun Miao;Wu Huijuan;LüShining;Gao Youshan;Wang Aihong(College of Mechanical Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,Shanxi,China;Taiyuan Heavy Industry Co.,Ltd.,Taiyuan 030024,Shanxi,China)
出处 《钢铁钒钛》 CAS 北大核心 2024年第4期158-162,共5页 Iron Steel Vanadium Titanium
基金 山西省自然科学基金(20210302123217) 山西省专利推广实施资助专项(20171064) 山西省研究生实践创新项目(2023SJ257) 太原科技大学研究生教育创新项目(BY2022014) 太原科技大学大学生创新创业训练计划(XJ2022178)。
关键词 FeC合金 力学性能 分子动力学 弹性模量 屈服强度 FeC alloy mechanical properties molecular dynamics elastic modulus yield strength
  • 相关文献

参考文献6

二级参考文献64

  • 1黄丹,章青,郭乙木.α-Fe和Ni纳米丝单向拉伸过程的分子动力学模拟[J].兵器材料科学与工程,2006,29(5):12-15. 被引量:3
  • 2Vaynman S, Isheim D, Kolli R P, Bhat S P, Seidman D N and Fine M E 2008 Metall. Mater. Trans. A 39 363.
  • 3Zhang Z, Liu C, Wen Y, Hirata A, Guo S, Chen G, Chen M W and Chin B A 2012Metall. Mater. Trans. A 43 351.
  • 4Nagai Y, Tang Z, Hassegawa M, Kanai T and Saneyasu M 2001 Phys. Rev. B 63 134110.
  • 5Odette G R and Lucas G E 2001 JOM 53 18.
  • 6Odette G R and Lucas G E 1998 Radiat. Eft. Defects Solids 144 189.
  • 7Knott J and English C 1999 Int. J. Press. Vessels Pip. 76 891.
  • 8Auger E Pareige E Welzel S and Duysen J V 2000 J. Nucl. Mater. 280 331.
  • 9Xu G, Chu D F, Cai L L, Zhou B X, Wang W and Peng J C 2011 Acta Metall Sin. 47 905.
  • 10Yu X M and Zhao S J 2013 Acta Metall Sin. 49 569.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部