摘要
本文深入探讨了基于深度学习的档案数据挖掘技术,分析了其在档案管理中的应用前景和挑战。文章首先概述了深度学习和档案数据挖掘的基本概念,然后详细介绍了深度学习在档案数据挖掘中的应用方法,包括特征提取、分类、聚类等。通过具体分析展示深度学习在档案数据挖掘中的优势,并提出针对性的优化策略。
This paper explores deeply the archival data mining technology based on deep learning,and analyzes its application prospects and challenges in archives management.It first outlines the basic concepts of deep learning and archival data mining,and then introduces in detail the application methods of deep learning in archival data mining,including feature extraction,classification,clustering,etc.Through specific analysis,it demonstrates the advantages of deep learning in archival data mining and proposes targeted optimization strategies.
出处
《兰台世界》
2024年第9期94-96,共3页
Lantai World
关键词
深度学习
档案数据挖掘
特征提取
分类
聚类
deep learning
archival data mining
feature extraction
classification
clustering