期刊文献+

基于粒子群优化Elman神经网络的流量温度复合测量

Flow and temperature composite measurement based on particle swarm optimization Elman neural network
原文传递
导出
摘要 针对光纤布拉格光栅(fiber Bragg grating,FBG)传感器应变温度交叉敏感问题,提出了基于粒子群优化(particle swarm optimization,PSO)Elman神经网络的温度补偿算法。首先,基于流体力学和FBG传感原理,设计了探针式FBG流量温度复合测量传感器,分析了流量温度复合传感机理;然后,搭建了流量温度复合测量实验平台获取测量数据,进行了误差分析;最后,利用PSO优化Elman神经网络获取最优隐含层数和最优函数组合,构建PSO-Elman算法模型对测量数据进行温度补偿,补偿后FBG传感器在流量2—30 m^(3)/h范围内,流量最大误差、均方误差分别为0.086 m^(3)/h和0.0027 m^(3)/h,温度最大误差、均方误差分别为0.084℃和0.0017℃。实验结果表明:该传感器可实现管道内流体流量温度复合测量,结合PSO-Elman算法可以有效降低应变温度交叉敏感引起的误差,显著提升传感器测量性能。 For the strain-temperature cross-sensitivity problem of fiber Bragg grating(FBG)sensor,a temperature compensation algorithm based on Elman neural network with particle swarm optimization(PSO)is proposed.Firstly,based on the principles of fluid mechanics and FBG sensing,a probe-type FBG flow-temperature composite measurement sensor is designed and the flow-temperature composite sensing mechanism is analyzed;then,a flow-temperature composite measurement experimental platform is built,measurement data are obtained,and error analysis is performed;finally,the optimal number of implied layers and the optimal combination of functions are obtained using the PSO-optimized Elman neural network,the flow maximum error and the mean error of the FBG sensor are 0.086 m^(3)h and 0.0027 m^(3)/h,in the flow range of 2 m^(3)/h—30 m^(3)/h after FBG sensor is compensated,the maximum error and mean square error of temperature are 0.084℃and 0.0017℃,respectively.The experimental results show that the sensor can realize the composite measurement of fluid flow and temperature in the pipeline,and the combination of the PSO-Elman algorithm can effectively reduce the error caused by strain-temperature cross-sensitivity and significantly improve the measurement performance of the sensor.
作者 刘潇 孙世政 张辉 刘照伟 刘超 LIU Xiao;SUN Shizheng;ZHANG Hui;LIU Zhaowei;LIU Chao(School of Mechatronics and Vehicle Engineering,Chongqing Jiaotong University,Chongqing 400074,China)
出处 《光电子.激光》 CAS CSCD 北大核心 2024年第11期1183-1191,共9页 Journal of Optoelectronics·Laser
基金 国家自然科学基金青年科学基金(52105542) “成渝地区双城经济圈建设”科技创新项目(KJCX2020032) 重庆市教委科学技术研究项目(KJZD-K202200705)资助项目。
关键词 光纤布拉格光栅 流量温度复合测量 应变温度交叉敏感 粒子群算法 ELMAN神经网络 fiber Bragg grating(FBG) flow-temperature composite measurement strain-temperature cross-sensitivity particle swarm algorithm Elman neural network
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部