期刊文献+

一种改进的超分辨率轻量化特征融合方法

An Improved Super-Resolution Lightweight Feature Fusion Method
下载PDF
导出
摘要 图像超分辨率技术可以通过提高图像的分辨率从而有效提升图片的质量和观看的视频体验。然而,小型嵌入式设备因硬件资源受限难以运行常规模型。为减少模型的参数量以及加快模型运算速度,提出一种改进的超分辨率轻量化特征融合方法ILFM。设计结构间部分参数共享模块,使得在参数量基本不变的情况下增强模块的表达能力,进而增强模型输出图像质量,设计一种更加轻量的可分离编解码基本模块。在模型中双层网络结构和改进的参数共享方法被设计为1个统一结构。除此之外,采用通道叠加的图像预处理方式来提取更多的图像特征。在DIV2K和Flickr2K数据集上进行训练,在Set5和BSDS100等多个基准数据集上进行测试,实验结果表明,相较于基准模型IMDN,ILFM在超分辨率系数为2和4且输出更高图片质量的情况下参数量分别降低了63%和61%。对比当前最优的轻量化超分辨率模型,ILFM能够在多个数据集的峰值信噪比(PSNR)和结构相似性(SSIM)上取得平均0.04378 dB和0.0013的增长,具有更优的综合性能。 Image super-resolution technology effectively enhances picture quality and improves the viewing experience of videos by increasing the resolution of images.However,it is difficult for small embedded devices to run conventional models due to limited hardware resources.To reduce the number of model parameters and accelerate computation,this study proposes ILFM as an improved super-resolution lightweight feature fusion method.A parameter sharing module between structures is designed to enhance expressive power while maintaining a relatively constant number of parameters,thereby improving the quality of model output.Furthermore,a lighter and separable encoding and decoding basic module is introduced.The dual-layer network structure and improved parameter sharing method are designed as a unified structure in the model,and the image preprocessing method of channel stacking is used to extract additional image features.The network is trained on the DIV2K and Flickr2K datasets and subsequently tested on multiple benchmark datasets such as Set5 and BSDS100.The experimental results show that compared to the IMDN benchmark model,ILFM reduces the number of model parameters by 63%and 61%for super-resolution coefficients of 2 and 4,respectively,as well as improving output image quality.Compared to the current optimal lightweight super-resolution model,ILFM achieves an average increase of 0.04378 dB and 0.0013 in Peak Signal-to-Noise Ratio(PSNR)and Structural Similarity(SSIM),respectively,across multiple datasets,demonstrating superior overall performance.
作者 李志鹏 陈丹阳 钟诚 LI Zhipeng;CHEN Danyang;ZHONG Cheng(School of Computer,Electronics and Information,Guangxi University,Nanning 530004,Guangxi,China;Key Laboratory of Parallel Distributed Computing Technology in Guangxi Universities,Nanning 530004,Guangxi,China)
出处 《计算机工程》 CAS CSCD 北大核心 2024年第11期258-265,共8页 Computer Engineering
基金 广西科技发展战略研究专项课题(桂科ZL19107008)。
关键词 图像超分辨率 轻量化 卷积 参数共享 编解码 image super-resolution lightweight convolution parameter sharing encode-decode
  • 相关文献

参考文献4

二级参考文献19

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部