摘要
对图中的每条边标记正边或负边,这样的图称为符号图。给出符号图的积运算(对称积、直积、半强积、强积)的定义,得到这些积运算符号图邻接矩阵的张量形式,并得到积运算(直积、半强积、强积)符号图的邻接谱。
A graph whose edges are labeled either as positive or negative is called a signed graph.The product operations,i.e.symmetric product,direct product,semi-strong product and strong product,of signed graphs are given,respectively.The adjacency matrices of these product operation signed graphs in tensor form are obtained,and some relations on the eigenvalues of signed graphs on product operations(direct product,semi-strong product,strong product)are also formulated.
作者
方子强
李龙捷
任海珍
FANG Ziqiang;LI Longjie;REN Haizhen(Department of Mathematics and Statistics,Qinghai Normal University,Xining 810008,Qinghai,China;The State Key Laboratory of Tibetan Information Processing and Application,Xining 810008,Qinghai,China;Academy of Plateau,Science and Sustainability,Xining 810008,Qinghai,China)
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2024年第10期101-106,共6页
Journal of Shandong University(Natural Science)
基金
青海省自然科学基金资助项目(2020-ZJ-924)
国家自然科学基金资助项目(12161073)。
关键词
符号图
符号图的积运算
邻接矩阵
邻接谱
signed graph
product operation of signed graph
adjacency matrix
adjacency spectrum