期刊文献+

基于深度特征点提取的压力管道焊缝三维形态参数测量方法

Measurement Method of Three-dimensional Morphological Parameters of Welds of Pressure Pipelines Based on Depth Feature Point Extraction
下载PDF
导出
摘要 压力管道焊缝三维形态检测是压力管道安全运行的保障。本文针对人工检测方法效率低、准确性差的问题,提出视觉与结构光结合的外表面纵焊缝三维形态参数检测方法,采用结构激光与CMOS相机三角测量方法,基于深度卷积的特征点提取网络结构,提取焊缝特征点,完成焊缝余高、宽度、咬边参数检测,采用拟合被检圆筒件标准圆的方法,完成焊缝错边量与棱角度的检测,设计线切割加工模拟焊接件对整个测量系统误差进行评定,焊缝5个参数测量误差在0.1mm内。 The detection of three-dimensional morphological parameters of weld seams of pressure pipelines is the guarantee for the safe operation of pressure pipelines.Aiming at the problems of low efficiency and poor accuracy of manual detection methods,we propose a three-dimensional morphological parameter detection method of longitudinal welds on the outer surface by combining vision and structured light,adopting the triangulation method of structured laser and CMOS camera,and proposing the structure of feature-point extraction network based on depth convolution to extract the feature points of weld seams and complete the detection of reinforcement,width and uncut parameters of weld seams.The detection of the parameters of the weld seam,misalignment,the method of fitting the standard circle of the inspected cylindrical parts,completing the detection of the amount of weld seam misalignment and the peaking,the design of the wire cutting processing simulation of the welded parts to evaluate the error of the whole measurement system,the measurement error of the 5 parameters of the weld seam is within 0.1 mm.
作者 廖普 王锋淮 卜阳景 Liao Pu;Wang Fenghuai;Bu Yangjing(Zhejiang Research Institute of Special Equipment,Hangzhou 310020;Key Laboratory of Inspection and Testing Technology Research for Petrochemical Equipment of Zhejiang Province Market Regulation Management System,Hangzhou 310020;Zhejiang Provincial Key Laboratory of Special Equipment Safety Testing Technology Research,Hangzhou 310020)
出处 《中国特种设备安全》 2024年第10期15-22,28,共9页 China Special Equipment Safety
基金 浙江省“尖兵领雁+X”研发攻关计划(2024C03253)。
关键词 压力管道 机器视觉 深度学习 线结构光 Pressure piping Machine vision Deep learning Line structured light
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部